login
A201660
Decimal expansion of least x satisfying 10*x^2 = csc(x) and 0 < x < Pi.
3
4, 6, 9, 9, 3, 1, 6, 0, 6, 0, 0, 0, 5, 8, 8, 9, 2, 2, 8, 6, 8, 6, 5, 3, 5, 3, 5, 0, 6, 1, 8, 9, 1, 3, 0, 6, 3, 8, 8, 3, 0, 0, 1, 3, 8, 0, 3, 5, 1, 8, 7, 1, 7, 7, 1, 9, 5, 5, 5, 3, 2, 2, 0, 6, 5, 8, 3, 1, 9, 3, 9, 2, 9, 8, 6, 4, 9, 6, 1, 7, 2, 5, 3, 0, 5, 5, 7, 6, 3, 7, 7, 6, 3, 2, 6, 7, 3, 4, 0, 8
OFFSET
0,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 0.469931606000588922868653535061891306388300...
greatest: 3.131394253920689935444028622238747025122...
MATHEMATICA
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
RealDigits[r] (* A201660 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
RealDigits[r] (* A201662 *)
PROG
(PARI) a=10; c=0; solve(x=0.4, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018
CROSSREFS
Cf. A201564.
Sequence in context: A084335 A277893 A197575 * A341577 A094115 A339856
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 04 2011
EXTENSIONS
Terms a(90) onward corrected by G. C. Greubel, Sep 11 2018
STATUS
approved