login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of least x satisfying 10*x^2 = csc(x) and 0 < x < Pi.
3

%I #11 Sep 12 2018 01:33:04

%S 4,6,9,9,3,1,6,0,6,0,0,0,5,8,8,9,2,2,8,6,8,6,5,3,5,3,5,0,6,1,8,9,1,3,

%T 0,6,3,8,8,3,0,0,1,3,8,0,3,5,1,8,7,1,7,7,1,9,5,5,5,3,2,2,0,6,5,8,3,1,

%U 9,3,9,2,9,8,6,4,9,6,1,7,2,5,3,0,5,5,7,6,3,7,7,6,3,2,6,7,3,4,0,8

%N Decimal expansion of least x satisfying 10*x^2 = csc(x) and 0 < x < Pi.

%C See A201564 for a guide to related sequences. The Mathematica program includes a graph.

%H G. C. Greubel, <a href="/A201660/b201660.txt">Table of n, a(n) for n = 0..10000</a>

%e least: 0.469931606000588922868653535061891306388300...

%e greatest: 3.131394253920689935444028622238747025122...

%t f[x_] := a*x^2 + c; g[x_] := Csc[x]

%t Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201660 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201662 *)

%o (PARI) a=10; c=0; solve(x=0.4, 1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Sep 11 2018

%Y Cf. A201564.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Dec 04 2011

%E Terms a(90) onward corrected by _G. C. Greubel_, Sep 11 2018