The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201661 Decimal expansion of least x satisfying x^2 - 1 = csc(x) and 0
 1, 4, 1, 8, 3, 5, 5, 6, 1, 8, 5, 4, 4, 9, 4, 2, 6, 5, 6, 3, 3, 5, 3, 0, 6, 2, 3, 6, 8, 7, 2, 0, 8, 1, 9, 1, 9, 3, 3, 6, 0, 8, 6, 0, 7, 1, 9, 4, 4, 2, 3, 1, 8, 8, 8, 4, 1, 9, 9, 5, 2, 7, 3, 9, 8, 4, 1, 1, 0, 9, 3, 7, 8, 2, 6, 9, 7, 4, 6, 2, 0, 7, 9, 6, 9, 2, 0, 3, 5, 0, 8, 7, 4, 1, 3, 1, 5, 5, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A201564 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE least:  1.4183556185449426563353062368720819193360860... greatest:  3.0179424745361512278525720832771672528942... MATHEMATICA a = 1; c = -1; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r]     (* A201661 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110] RealDigits[r]     (* A201663 *) PROG (PARI) a=1; c=-1; solve(x=1, 2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018 CROSSREFS Cf. A201564. Sequence in context: A112032 A199049 A145917 * A263498 A198314 A105534 Adjacent sequences:  A201658 A201659 A201660 * A201662 A201663 A201664 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 01:05 EST 2020. Contains 331178 sequences. (Running on oeis4.)