login
A201659
Decimal expansion of greatest x satisfying 9*x^2 = csc(x) and 0 < x < Pi.
3
3, 1, 3, 0, 2, 5, 2, 7, 8, 6, 1, 7, 3, 5, 3, 6, 0, 3, 5, 0, 0, 3, 7, 0, 1, 2, 2, 7, 7, 7, 5, 4, 0, 3, 1, 6, 3, 6, 9, 2, 7, 7, 5, 4, 0, 1, 2, 3, 7, 9, 0, 9, 2, 2, 3, 2, 0, 4, 2, 7, 8, 8, 9, 1, 6, 2, 7, 6, 5, 5, 0, 4, 1, 7, 3, 6, 7, 9, 6, 3, 0, 5, 0, 2, 1, 9, 0, 5, 4, 6, 7, 0, 4, 3, 8, 2, 7, 8, 1
OFFSET
1,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 0.4871825725461343607675424300430642207826...
greatest: 3.1302527861735360350037012277754031636...
MATHEMATICA
a = 9; c = 0;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
RealDigits[r] (* A201658 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
RealDigits[r] (* A201659 *)
PROG
(PARI) a=9; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018
CROSSREFS
Cf. A201564.
Sequence in context: A011087 A180021 A091422 * A253625 A244375 A253626
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 04 2011
STATUS
approved