login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201590 Decimal expansion of greatest x satisfying 5*x^2 = csc(x) and 0 < x < Pi. 3
3, 1, 2, 1, 0, 5, 9, 4, 6, 3, 5, 2, 3, 8, 2, 7, 4, 1, 5, 3, 6, 0, 1, 7, 5, 7, 0, 0, 0, 3, 4, 0, 9, 2, 0, 4, 8, 9, 1, 0, 7, 4, 9, 9, 6, 8, 4, 4, 7, 8, 4, 7, 8, 2, 7, 1, 2, 2, 2, 5, 2, 7, 1, 0, 2, 4, 0, 7, 1, 2, 3, 5, 0, 6, 2, 6, 9, 9, 8, 4, 0, 2, 3, 6, 0, 2, 1, 6, 0, 4, 6, 0, 7, 0, 9, 2, 7, 5, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A201564 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least:  0.596626819860704546761832859082141048303653100...

greatest:  3.121059463523827415360175700034092048910749...

MATHEMATICA

a = 5; c = 0;

f[x_] := a*x^2 + c; g[x_] := Csc[x]

Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]

RealDigits[r]   (* A201589 *)

r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]

RealDigits[r]   (* A201590 *)

PROG

(PARI) a=5; c=0; solve(x=3.1, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

CROSSREFS

Cf. A201564.

Sequence in context: A255615 A056931 A139569 * A235358 A086249 A176784

Adjacent sequences:  A201587 A201588 A201589 * A201591 A201592 A201593

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 03 2011

EXTENSIONS

Terms a(88) onward corrected by G. C. Greubel, Aug 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 20:41 EST 2020. Contains 331066 sequences. (Running on oeis4.)