login
A201582
Decimal expansion of greatest x satisfying x^2 = csc(x) and 0<x<Pi.
2
3, 0, 3, 2, 6, 4, 5, 4, 1, 8, 3, 8, 8, 7, 5, 6, 1, 8, 8, 6, 7, 5, 3, 2, 5, 6, 3, 6, 8, 0, 2, 6, 0, 8, 9, 3, 2, 8, 4, 6, 7, 2, 3, 6, 2, 6, 7, 4, 9, 9, 7, 1, 8, 5, 9, 8, 5, 1, 9, 8, 4, 5, 6, 7, 7, 8, 0, 6, 7, 1, 1, 3, 4, 1, 9, 9, 2, 4, 2, 2, 5, 0, 4, 2, 5, 5, 8, 4, 3, 8, 8, 9, 8, 8, 9, 7, 1, 0, 4
OFFSET
1,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 1.068223544197249018283471114263092898468...
greatest: 3.032645418388756188675325636802608932...
MATHEMATICA
a = 1; c = 0;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
RealDigits[r] (* A196617 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
RealDigits[r] (* A201582 *)
PROG
(PARI) a=1; c=0; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018
CROSSREFS
Sequence in context: A297168 A112470 A331924 * A369881 A115379 A376229
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 03 2011
STATUS
approved