login
A201585
Decimal expansion of least x satisfying 3*x^2 = csc(x) and 0<x<Pi.
3
7, 1, 3, 6, 1, 1, 5, 4, 1, 0, 6, 5, 4, 5, 3, 5, 1, 6, 9, 6, 7, 1, 2, 3, 4, 8, 7, 4, 8, 4, 8, 2, 8, 2, 3, 1, 1, 4, 4, 0, 0, 5, 5, 5, 1, 9, 8, 5, 0, 0, 2, 7, 5, 7, 8, 8, 6, 3, 6, 5, 8, 4, 1, 9, 1, 4, 4, 4, 9, 9, 0, 3, 5, 1, 3, 2, 8, 5, 5, 6, 4, 8, 4, 8, 0, 8, 7, 8, 7, 0, 0, 2, 5, 8, 9, 6, 5, 5, 0
OFFSET
0,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 0.71361154106545351696712348748482823114400555...
greatest: 3.10705708466927913942133639758902326551860...
MATHEMATICA
a = 3; c = 0;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
RealDigits[r] (* A201585 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
RealDigits[r] (* A201586 *)
PROG
(PARI) a=3; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018
CROSSREFS
Cf. A201564.
Sequence in context: A039616 A344967 A362923 * A089562 A104621 A331900
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 03 2011
STATUS
approved