login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201588 Decimal expansion of greatest x satisfying 4*x^2 = csc(x) and 0 < x < Pi. 3
3, 1, 1, 5, 8, 3, 9, 0, 5, 1, 2, 7, 6, 2, 5, 3, 5, 2, 1, 1, 3, 1, 0, 8, 5, 0, 1, 5, 1, 9, 5, 2, 0, 8, 2, 5, 8, 7, 8, 1, 1, 1, 2, 0, 9, 6, 5, 8, 8, 8, 1, 7, 4, 0, 1, 0, 7, 7, 2, 8, 9, 3, 9, 0, 0, 7, 8, 2, 4, 7, 0, 2, 2, 4, 1, 3, 9, 2, 7, 8, 4, 1, 4, 1, 9, 7, 4, 9, 9, 3, 0, 3, 8, 8, 6, 8, 6, 2, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A201564 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least:  0.6448974755436738344433573900444745201701368...

greatest:  3.1158390512762535211310850151952082587811...

MATHEMATICA

a = 4; c = 0;

f[x_] := a*x^2 + c; g[x_] := Csc[x]

Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]

RealDigits[r]   (* A201587 *)

r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]

RealDigits[r]   (* A201588 *)

PROG

(PARI) a=4; c=0; solve(x=3.1, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

CROSSREFS

Cf. A201564.

Sequence in context: A118538 A141523 A285808 * A086385 A295222 A123162

Adjacent sequences:  A201585 A201586 A201587 * A201589 A201590 A201591

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 03 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 01:52 EST 2020. Contains 332299 sequences. (Running on oeis4.)