login
A201671
Decimal expansion of greatest x satisfying 5*x^2 - 1 = csc(x) and 0<x<Pi.
3
3, 1, 2, 0, 6, 2, 2, 9, 9, 3, 0, 8, 6, 9, 1, 8, 8, 0, 5, 1, 4, 1, 2, 7, 3, 4, 2, 4, 6, 2, 3, 0, 6, 6, 0, 0, 2, 1, 7, 0, 0, 3, 5, 6, 2, 4, 5, 2, 7, 7, 9, 7, 3, 7, 1, 1, 0, 9, 8, 7, 8, 5, 9, 1, 2, 2, 8, 1, 0, 3, 9, 7, 7, 4, 6, 4, 5, 3, 7, 4, 0, 0, 1, 4, 8, 8, 0, 6, 3, 0, 8, 4, 4, 1, 1, 7, 5, 1, 1
OFFSET
1,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 0.711533888367151499246796307428212556772...
greatest: 3.120622993086918805141273424623066002...
MATHEMATICA
a = 5; c = -1;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
RealDigits[r] (* A201670 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
RealDigits[r] (* A201671 *)
PROG
(PARI) a=5; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 11 2018
CROSSREFS
Cf. A201564.
Sequence in context: A222212 A318526 A054869 * A226590 A261349 A227962
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 04 2011
STATUS
approved