login
A201736
Decimal expansion of greatest x satisfying x^2 - 3 = csc(x) and 0<x<Pi.
3
2, 9, 6, 8, 7, 1, 1, 9, 8, 1, 1, 6, 1, 4, 1, 2, 4, 4, 6, 7, 5, 5, 4, 0, 4, 3, 9, 2, 7, 2, 3, 9, 4, 3, 5, 0, 6, 7, 7, 5, 0, 7, 0, 0, 7, 7, 8, 9, 2, 3, 2, 6, 2, 9, 2, 3, 9, 0, 3, 1, 2, 1, 2, 3, 6, 6, 6, 1, 0, 5, 9, 8, 6, 6, 3, 4, 1, 4, 8, 9, 1, 2, 6, 0, 8, 0, 6, 5, 8, 5, 6, 2, 5, 1, 6, 6, 4, 7, 0
OFFSET
1,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 2.028479610685815736595839405840741960330...
greatest: 2.968711981161412446755404392723943506...
MATHEMATICA
a = 1; c = -3;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 2.0, 2.1}, WorkingPrecision -> 110]
RealDigits[r] (* A201735 *)
r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
RealDigits[r] (* A201736 *)
PROG
(PARI) a=1; c=-3; solve(x=2.7, 3, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 12 2018
CROSSREFS
Cf. A201564.
Sequence in context: A233766 A021341 A011247 * A068632 A320037 A122664
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 04 2011
STATUS
approved