This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201676 Decimal expansion of least x satisfying 8*x^2-1=csc(x) and 0
 5, 9, 1, 0, 3, 8, 4, 5, 6, 3, 4, 1, 7, 9, 2, 3, 5, 6, 7, 5, 1, 1, 9, 5, 4, 8, 1, 8, 2, 5, 4, 6, 8, 7, 4, 6, 7, 5, 9, 3, 3, 3, 7, 2, 2, 1, 8, 8, 2, 7, 7, 1, 7, 2, 8, 0, 7, 2, 3, 4, 1, 2, 8, 2, 6, 1, 1, 6, 7, 4, 3, 3, 0, 0, 3, 1, 5, 1, 9, 7, 1, 8, 0, 8, 7, 5, 5, 4, 1, 5, 4, 6, 9, 6, 5, 4, 3, 9, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A201564 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least:  0.591038456341792356751195481825468746759333... greatest:  3.128657013857735929983404048440286781650... MATHEMATICA a = 8; c = -1; f[x_] := a*x^2 + c; g[x_] := Csc[x] Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r]     (* A201676 *) r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110] RealDigits[r]     (* A201677 *) CROSSREFS Cf. A201564. Sequence in context: A193017 A096789 A019705 * A199797 A188616 A127414 Adjacent sequences:  A201673 A201674 A201675 * A201677 A201678 A201679 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .