login
A201737
Decimal expansion of least x satisfying x^2 - 4 = csc(x) and 0<x<Pi.
3
2, 3, 1, 5, 0, 4, 6, 9, 3, 3, 6, 1, 7, 3, 7, 4, 8, 1, 7, 6, 7, 1, 5, 7, 6, 2, 6, 2, 7, 1, 9, 1, 9, 4, 3, 5, 0, 8, 0, 8, 1, 6, 2, 2, 4, 1, 0, 9, 8, 6, 8, 7, 3, 2, 8, 6, 1, 0, 7, 3, 8, 5, 8, 9, 6, 0, 4, 4, 1, 8, 1, 1, 4, 9, 2, 2, 8, 2, 2, 3, 1, 2, 8, 4, 3, 4, 1, 5, 6
OFFSET
1,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least: 2.31504693361737481767157626271919435080...
greatest: 2.91834369901820138765983699207605876...
MATHEMATICA
a = 1; c = -4;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 2.3, 2.4}, WorkingPrecision -> 110]
RealDigits[r] (* A201737 *)
r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
RealDigits[r] (* A201738 *)
PROG
(PARI) a=1; c=-4; solve(x=2, 2.5, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 12 2018
CROSSREFS
Cf. A201564.
Sequence in context: A264560 A300625 A264638 * A080063 A187680 A328731
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 04 2011
STATUS
approved