login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034931 Pascal's triangle read modulo 4. 23
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 0, 3, 2, 1, 1, 3, 1, 3, 3, 1, 3, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 2, 2, 0, 0, 1, 1, 1, 2, 1, 0, 2, 0, 2, 0, 1, 2, 1, 1, 3, 3, 1, 2, 2, 2, 2, 1, 3, 3, 1, 1, 0, 2, 0, 3, 0, 0, 0, 3, 0, 2, 0, 1, 1, 1, 2, 2, 3, 3, 0, 0, 3, 3, 2, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The number of 3's in row n is given by 2^(A000120(n)-1) if A014081(n) is nonzero, else by 0 [Davis & Webb]. - R. J. Mathar, Jul 28 2017

LINKS

Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened

Kenneth S. Davis and William A. Webb, Lucas' theorem for prime powers, European Journal of Combinatorics 11:3 (1990), pp. 229-233.

Kenneth S. Davis and William A. Webb, Pascal's triangle modulo 4, Fib. Quart., 29 (1991), 79-83.

James G. Huard, Blair K. Spearman, and Kenneth S. Williams, Pascal's triangle (mod 8), European Journal of Combinatorics 19:1 (1998), pp. 45-62.

Ivan Korec, Definability of Pascal's Triangles Modulo 4 and 6 and Some Other Binary Operations from Their Associated Equivalence Relations, Acta Univ. M. Belii Ser. Math. 4 (1996), pp. 53-66.

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(n+1,k) = (T(n,k) + T(n,k-1)) mod 4. - Reinhard Zumkeller, Mar 14 2015

EXAMPLE

Triangle begins:

  {1},

  {1, 1},

  {1, 2, 1},

  {1, 3, 3, 1},

  {1, 0, 2, 0, 1},

  {1, 1, 2, 2, 1, 1},

  {1, 2, 3, 0, 3, 2, 1},

  {1, 3, 1, 3, 3, 1, 3, 1},

  {1, 0, 0, 0, 2, 0, 0, 0, 1},

  {1, 1, 0, 0, 2, 2, 0, 0, 1, 1},

  {1, 2, 1, 0, 2, 0, 2, 0, 1, 2, 1},

  {1, 3, 3, 1, 2, 2, 2, 2, 1, 3, 3, 1},

  ...

MAPLE

A034931 := proc(n, k)

    modp(binomial(n, k), 4) ;

end proc:

seq(seq(A034931(n, k), k=0..n), n=0..10); # R. J. Mathar, Jul 28 2017

MATHEMATICA

Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 4] (* Robert G. Wilson v, May 26 2004 *)

PROG

(Haskell)

a034931 n k = a034931_tabl !! n !! k

a034931_row n = a034931_tabl !! n

a034931_tabl = iterate

   (\ws -> zipWith ((flip mod 4 .) . (+)) ([0] ++ ws) (ws ++ [0])) [1]

-- Reinhard Zumkeller, Mar 14 2015

(PARI) C(n, k)=binomial(n, k)%4 \\ Charles R Greathouse IV, Aug 09 2016

(PARI) f(n, k)=2*(bitand(n-k, k)==0);

T(n, j)=if(j==0, return(1)); my(k=logint(n, 2), K=2^k, K1=K/2, L=n-K); if(L<K1, if(j<=L, T(L, j), j<K1, 0, j<=K1+L, f(L, j-K1), j<K, 0, T(L, j-K)), if(j<K1, T(L, j), j<=L, bitxor(T(L, j), f(L, j-K1)), j<K, f(L, j-K1), j<=L+K, bitxor(T(L, j-K), f(L, j-K1)), T(L, j-K))); \\ See Davis & Webb 1991. - Charles R Greathouse IV, Aug 11 2016

CROSSREFS

Cf. A007318, A047999, A083093, A034930, A008975, A034932, A163000 (# 2's), A270438 (# 1's), A249732 (# 0's).

Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).

Sequence in context: A186332 A129571 A180180 * A248473 A307116 A212626

Adjacent sequences:  A034928 A034929 A034930 * A034932 A034933 A034934

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 02:13 EST 2019. Contains 329910 sequences. (Running on oeis4.)