OFFSET
0,5
LINKS
Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
Ilya Gutkovskiy, Illustrations (triangle formed by reading Pascal's triangle mod m)
James G. Huard, Blair K. Spearman, and Kenneth S. Williams, Pascal's triangle (mod 8), European Journal of Combinatorics 19:1 (1998), pp. 45-62.
FORMULA
T(n+1,k) = (T(n,k) + T(n,k-1)) mod 8. - Reinhard Zumkeller, Jul 12 2013
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 8] (* Robert G. Wilson v, May 26 2004 *)
PROG
(Haskell)
a034930 n k = a034930_tabl !! n !! k
a034930_row n = a034930_tabl !! n
a034930_tabl = iterate
(\ws -> zipWith (\u v -> mod (u + v) 8) ([0] ++ ws) (ws ++ [0])) [1]
-- Reinhard Zumkeller, Jul 12 2013, Jun 21 2013
CROSSREFS
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), (this sequence) (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved