login
A034930
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 8.
15
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 2, 2, 5, 1, 1, 6, 7, 4, 7, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 2, 5, 0, 2, 4, 2, 0, 5, 2, 1, 1, 3, 7, 5, 2, 6, 6, 2, 5, 7, 3, 1, 1, 4, 2, 4, 7, 0, 4, 0, 7, 4, 2, 4, 1, 1, 5, 6, 6, 3, 7, 4, 4, 7, 3, 6, 6, 5, 1
OFFSET
0,5
LINKS
James G. Huard, Blair K. Spearman, and Kenneth S. Williams, Pascal's triangle (mod 8), European Journal of Combinatorics 19:1 (1998), pp. 45-62.
FORMULA
T(n+1,k) = (T(n,k) + T(n,k-1)) mod 8. - Reinhard Zumkeller, Jul 12 2013
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 8] (* Robert G. Wilson v, May 26 2004 *)
PROG
(Haskell)
a034930 n k = a034930_tabl !! n !! k
a034930_row n = a034930_tabl !! n
a034930_tabl = iterate
(\ws -> zipWith (\u v -> mod (u + v) 8) ([0] ++ ws) (ws ++ [0])) [1]
-- Reinhard Zumkeller, Jul 12 2013, Jun 21 2013
CROSSREFS
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), (this sequence) (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A096145 A306309 A123264 * A095142 A180171 A140822
KEYWORD
nonn,tabl
STATUS
approved