

A095141


Triangle formed by reading Pascal's triangle (A007318) mod 6.


13



1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 0, 4, 1, 1, 5, 4, 4, 5, 1, 1, 0, 3, 2, 3, 0, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 2, 4, 2, 4, 2, 4, 2, 1, 1, 3, 0, 0, 0, 0, 0, 0, 3, 1, 1, 4, 3, 0, 0, 0, 0, 0, 3, 4, 1, 1, 5, 1, 3, 0, 0, 0, 0, 3, 1, 5, 1, 1, 0, 0, 4, 3, 0, 0, 0, 3, 4, 0, 0, 1, 1, 1, 0, 4, 1, 3, 0, 0, 3, 1, 4, 0, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


LINKS

Table of n, a(n) for n=0..104.
Bill Gosper, Pastelcolored illustration of triangle
Ivan Korec, Definability of Pascal's Triangles Modulo 4 and 6 and Some Other Binary Operations from Their Associated Equivalence Relations, Acta Univ. M. Belii Ser. Math. 4 (1996), pp. 5366.


FORMULA

T(i, j) = binomial(i, j) (mod 6).


MATHEMATICA

Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 6]
Graphics[Table[{%[Mod[Binomial[n, k], 6]/5], RegularPolygon[{4√3 (k  n/2), 6 n}, {4, π/6}, 6]}, {n, 0, 105}, {k, 0, n}]] /* Mma code for illustration, Bill Gosper, Aug 05 2017


CROSSREFS

Cf. A007318, A047999, A083093, A034931, A095140, A095142, A034930, A095143, A008975, A095144, A095145, A034932.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A174374 A242641 A027948 * A177974 A095140 A225043
Adjacent sequences: A095138 A095139 A095140 * A095142 A095143 A095144


KEYWORD

easy,nonn,tabl


AUTHOR

Robert G. Wilson v, May 29 2004


STATUS

approved



