login
A008975
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 10.
20
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 0, 0, 5, 1, 1, 6, 5, 0, 5, 6, 1, 1, 7, 1, 5, 5, 1, 7, 1, 1, 8, 8, 6, 0, 6, 8, 8, 1, 1, 9, 6, 4, 6, 6, 4, 6, 9, 1, 1, 0, 5, 0, 0, 2, 0, 0, 5, 0, 1, 1, 1, 5, 5, 0, 2, 2, 0, 5, 5, 1, 1, 1, 2, 6, 0, 5, 2, 4, 2, 5, 0, 6, 2, 1, 1, 3, 8, 6, 5, 7, 6, 6
OFFSET
0,5
FORMULA
T(i, j) = binomial(i, j) mod 10.
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 10] (* Robert G. Wilson v, May 26 2004 *)
PROG
(Haskell)
a008975 n k = a008975_tabl !! n !! k
a008975_row n = a008975_tabl !! n
a008975_tabl = iterate
(\row -> map (`mod` 10) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
-- Reinhard Zumkeller, Feb 24 2012
CROSSREFS
Cf. A208278 (row sums), A208279 (central terms), A208134 (number of zeros per row), A208280 (distinct terms per row).
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), (this sequence) (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A180181 A128629 A107065 * A140280 A140586 A339379
KEYWORD
nonn,tabl,base
STATUS
approved