login
A034932
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 16.
15
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 4, 15, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 8, 12, 8, 6, 8, 12, 8, 1, 1, 9, 4, 4, 14, 14, 4, 4, 9, 1, 1, 10, 13, 8, 2, 12, 2, 8, 13, 10, 1, 1, 11, 7, 5, 10, 14, 14, 10
OFFSET
0,5
COMMENTS
T(n+1,k) = (T(n,k) + T(n,k-1)) mod 16. - Reinhard Zumkeller, Mar 14 2015
LINKS
James G. Huard, Blair K. Spearman, and Kenneth S. Williams, Pascal's triangle (mod 8), European Journal of Combinatorics 19:1 (1998), pp. 45-62.
FORMULA
T(i, j) = binomial(i, j) mod 16.
EXAMPLE
Triangle begins:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 4 15 6 1
1 7 5 3 3 5 7 1
1 8 12 8 6 8 12 8 1
1 9 4 4 14 14 4 4 9 1
1 10 13 8 2 12 2 8 13 10 1
1 11 7 5 10 14 14 10 5 7 11 1
.
Written in hexadecimal (with a=10, b=11, ..., f=15), rows 0..32 are
.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 a a 5 1
1 6 f 4 f 6 1
1 7 5 3 3 5 7 1
1 8 c 8 6 8 c 8 1
1 9 4 4 e e 4 4 9 1
1 a d 8 2 c 2 8 d a 1
1 b 7 5 a e e a 5 7 b 1
1 c 2 c f 8 c 8 f c 2 c 1
1 d e e b 7 4 4 7 b e e d 1
1 e b c 9 2 b 8 b 2 9 c b e 1
1 f 9 7 5 b d 3 3 d b 5 7 9 f 1
1 0 8 0 c 0 8 0 6 0 8 0 c 0 8 0 1
1 1 8 8 c c 8 8 6 6 8 8 c c 8 8 1 1
1 2 9 0 4 8 4 0 e c e 0 4 8 4 0 9 2 1
1 3 b 9 4 c c 4 e a a e 4 c c 4 9 b 3 1
1 4 e 4 d 0 8 0 2 8 4 8 2 0 8 0 d 4 e 4 1
1 5 2 2 1 d 8 8 2 a c c a 2 8 8 d 1 2 2 5 1
1 6 7 4 3 e 5 0 a c 6 8 6 c a 0 5 e 3 4 7 6 1
1 7 d b 7 1 3 5 a 6 2 e e 2 6 a 5 3 1 7 b d 7 1
1 8 4 8 2 8 4 8 f 0 8 0 c 0 8 0 f 8 4 8 2 8 4 8 1
1 9 c c a a c c 7 f 8 8 c c 8 8 f 7 c c a a c c 9 1
1 a 5 8 6 4 6 8 3 6 7 0 4 8 4 0 7 6 3 8 6 4 6 8 5 a 1
1 b f d e a a e b 9 d 7 4 c c 4 7 d 9 b e a a e d f b 1
1 c a c b 8 4 8 9 4 6 4 b 0 8 0 b 4 6 4 9 8 4 8 b c a c 1
1 d 6 6 7 3 c c 1 d a a f b 8 8 b f a a d 1 c c 3 7 6 6 d 1
1 e 3 c d a f 8 d e 7 4 9 a 3 0 3 a 9 4 7 e d 8 f a d c 3 e 1
1 f 1 f 9 7 9 7 5 b 5 b d 3 d 3 3 d 3 d b 5 b 5 7 9 7 9 f 1 f 1
1 0 0 0 8 0 0 0 c 0 0 0 8 0 0 0 6 0 0 0 8 0 0 0 c 0 0 0 8 0 0 0 1
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 16] (* Robert G. Wilson v, May 26 2004 *)
PROG
(Haskell)
a034932 n k = a034932_tabl !! n !! k
a034932_row n = a034932_tabl !! n
a034932_tabl = iterate
(\ws -> zipWith ((flip mod 16 .) . (+)) ([0] ++ ws) (ws ++ [0])) [1]
-- Reinhard Zumkeller, Mar 14 2015
CROSSREFS
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), (this sequence) (m = 16).
Sequence in context: A095144 A339359 A144398 * A374378 A180183 A273914
KEYWORD
nonn,tabl
STATUS
approved