login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034932 Pascal's triangle read modulo 16. 15
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 4, 15, 6, 1, 1, 7, 5, 3, 3, 5, 7, 1, 1, 8, 12, 8, 6, 8, 12, 8, 1, 1, 9, 4, 4, 14, 14, 4, 4, 9, 1, 1, 10, 13, 8, 2, 12, 2, 8, 13, 10, 1, 1, 11, 7, 5, 10, 14, 14, 10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

T(n+1,k) = (T(n,k) + T(n,k-1)) mod 16. - Reinhard Zumkeller, Mar 14 2015

REFERENCES

Huard et al., Europ. J. Combin., 19 (1998), 45-62.

LINKS

Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened

Index entries for triangles and arrays related to Pascal's triangle

FORMULA

T(i, j) = binomial(i, j) (mod 16).

MATHEMATICA

Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 16] (* Robert G. Wilson v, May 26 2004 *)

PROG

(Haskell)

a034932 n k = a034932_tabl !! n !! k

a034932_row n = a034932_tabl !! n

a034932_tabl = iterate

   (\ws -> zipWith ((flip mod 16 .) . (+)) ([0] ++ ws) (ws ++ [0])) [1]

-- Reinhard Zumkeller, Mar 14 2015

CROSSREFS

Cf. A007318, A047999, A083093, A034931, A034930, A008975.

Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).

Sequence in context: A095145 A095144 A144398 * A180183 A273914 A094495

Adjacent sequences:  A034929 A034930 A034931 * A034933 A034934 A034935

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 13:25 EST 2020. Contains 332044 sequences. (Running on oeis4.)