The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034933 Expansion of theta_3(q)^2 * theta_3(q^3) in powers of q. 8
 1, 4, 4, 2, 12, 16, 0, 8, 20, 4, 8, 8, 10, 32, 8, 0, 28, 24, 4, 8, 32, 16, 16, 16, 0, 28, 8, 2, 40, 48, 8, 8, 52, 0, 8, 16, 12, 64, 16, 8, 40, 24, 0, 24, 40, 16, 16, 16, 26, 28, 20, 0, 64, 80, 0, 16, 40, 24, 24, 8, 0, 64, 24, 8, 60, 48, 8, 24, 72, 0, 16, 16, 20, 48, 24, 10, 40, 96 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)=0 if n == 6*9^k (mod 9^(k+1)) for some k>=0. - Robert Israel, Aug 11 2019 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 FORMULA Number of integer solutions to x^2 + y^2 + 3*z^2 = n. Euler transform of period 12 sequence [4, -6, 6, -2, 4, -9, 4, -2, 6, -6, 4, -3, ...]. - Michael Somos, Sep 21 2005 Expansion of (eta(q^2)^2 * eta(q^6))^5 / (eta(q)^2 * eta(q^3) * eta(q^4)^2 * eta(q^12))^2 in power of q. - Michael Somos, Sep 21 2005 G.f.: theta_3(q)^2 * theta_3(q^3). EXAMPLE 1 + 4*q + 4*q^2 + 2*q^3 + 12*q^4 + 16*q^5 + 8*q^7 + 20*q^8 + 4*q^9 +... MAPLE S:= series(JacobiTheta3(0, q)^2*JacobiTheta3(0, q^3), q, 101): seq(coeff(S, q, i), i=0..100); # Robert Israel, Aug 11 2019 MATHEMATICA CoefficientList[EllipticTheta[3, 0, q]^2*EllipticTheta[3, 0, q^3]+O[q]^80, q] (* Jean-François Alcover, Nov 27 2015 *) PROG (PARI) {a(n) = if( n<1, n==0, qfrep( [ 1, 0, 0; 0, 1, 0; 0, 0, 3], n)[n] * 2)} /* Michael Somos, Sep 21 2005 */ CROSSREFS Sequence in context: A202322 A232523 A224821 * A320148 A320147 A272364 Adjacent sequences:  A034930 A034931 A034932 * A034934 A034935 A034936 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 05:39 EST 2020. Contains 331104 sequences. (Running on oeis4.)