login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095142 Triangle formed by reading Pascal's triangle (A007318) mod 7. 13
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 3, 3, 5, 1, 1, 6, 1, 6, 1, 6, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 1, 3, 3, 1, 0, 0, 0, 1, 3, 3, 1, 1, 4, 6, 4, 1, 0, 0, 1, 4, 6, 4, 1, 1, 5, 3, 3, 5, 1, 0, 1, 5, 3, 3, 5, 1, 1, 6, 1, 6, 1, 6, 1, 1, 6, 1, 6, 1, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

LINKS

Table of n, a(n) for n=0..104.

FORMULA

T(i, j) = binomial(i, j) (mod 7).

MATHEMATICA

Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 7]

CROSSREFS

Cf. A007318, A047999, A083093, A034931, A095140, A095141, A034930, A095143, A008975, A095144, A095145, A034932.

Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).

Sequence in context: A306309 A123264 A034930 * A180171 A140822 A212954

Adjacent sequences:  A095139 A095140 A095141 * A095143 A095144 A095145

KEYWORD

easy,nonn,tabl

AUTHOR

Robert G. Wilson v, May 29 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 04:33 EST 2019. Contains 329350 sequences. (Running on oeis4.)