login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095144 Triangle formed by reading Pascal's triangle (A007318) mod 11. 13
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 4, 9, 4, 6, 1, 1, 7, 10, 2, 2, 10, 7, 1, 1, 8, 6, 1, 4, 1, 6, 8, 1, 1, 9, 3, 7, 5, 5, 7, 3, 9, 1, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)

FORMULA

T(i, j) = binomial(i, j) (mod 11).

From Robert Israel, Jan 02 2019: (Start)

T(n,k) = T(n-1,k-1) + T(n-1,k) (mod 11) with T(n,0) = 1.

T(n,k) = Product_i binomial(n_i, k_i) (mod 11), where n_i and k_i are the base-11 digits of n and k. (End)

MAPLE

R[0]:= 1:

for  n from 1 to 20 do

  R[n]:= op([R[n-1], 0] + [0, R[n-1]] mod 11);

od:

for n from 0 to 20 do R[n] od; # Robert Israel, Jan 02 2019

MATHEMATICA

Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 11]

CROSSREFS

Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A095143, A008975, A095145, A034932.

Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).

Sequence in context: A180182 A275198 A095145 * A144398 A034932 A180183

Adjacent sequences:  A095141 A095142 A095143 * A095145 A095146 A095147

KEYWORD

easy,nonn,tabl

AUTHOR

Robert G. Wilson v, May 29 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 07:59 EDT 2020. Contains 333079 sequences. (Running on oeis4.)