login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180182 Triangle read by rows: T(n,k) is the number of compositions of n without 7's and having k parts; 1<=k<=n. 7
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 1, 5, 21, 35, 35, 21, 7, 1, 1, 6, 25, 56, 70, 56, 28, 8, 1, 1, 7, 30, 80, 126, 126, 84, 36, 9, 1, 1, 8, 36, 108, 205, 252, 210, 120, 45, 10, 1, 1, 9, 43, 141, 310, 456, 462, 330, 165, 55, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

REFERENCES

P. Chinn and S. Heubach, Compositions of n with no occurrence of k, Congressus Numerantium, 164 (2003), pp. 33-51 (see Table 9).

R.P. Grimaldi, Compositions without the summand 1, Congressus Numerantium, 152, 2001, 33-43.

LINKS

Table of n, a(n) for n=1..78.

P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.

FORMULA

Number of compositions of n without p's and having k parts = Sum((-1)^{k-j}*binom(k,j)*binom(n-pk+pj-1,j-1), j=(pk-n)/(p-1)..k).

For a given p, the g.f. of the number of compositions without p's is G(t,z)=tg(z)/[1-tg(z)], where g(z)=z/(1-z)-z^p; here z marks sum of parts and t marks number of parts.

EXAMPLE

T(10,2)=7 because we have (1,9), (9,1), (2,8), (8,2), (6,4), (4,6), and (5,5).

Triangle starts:

1;

1,1;

1,2,1;

1,3,3,1;

1,4,6,4,1;

1,5,10,10,5,1;

0,6,15,20,15,6,1;

MAPLE

p := 7: T := proc (n, k) options operator, arrow: sum((-1)^(k-j)*binomial(k, j)*binomial(n-p*k+p*j-1, j-1), j = (p*k-n)/(p-1) .. k) end proc: for n to 13 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form

p := 7: g := z/(1-z)-z^p: G := t*g/(1-t*g): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 13 do seq(coeff(P[n], t, k), k = 1 .. n) end do; # yields sequence in triangular form

with(combinat): m := 7: T := proc (n, k) local ct, i: ct := 0: for i to numbcomp(n, k) do if member(m, composition(n, k)[i]) = false then ct := ct+1 else end if end do: ct end proc: for n to 12 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form

MATHEMATICA

p = 7; max = 14; g = z/(1-z) - z^p; G = t*g/(1-t*g); Gser = Series[G, {z, 0, max+1}]; t[n_, k_] := SeriesCoefficient[Gser, {z, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 28 2014, after Maple *)

CROSSREFS

Cf. A011973, A180177, A180178, A180179, A180180, A180181, A180183.

Sequence in context: A223968 A214846 A061676 * A275198 A095145 A095144

Adjacent sequences:  A180179 A180180 A180181 * A180183 A180184 A180185

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Aug 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 11:30 EST 2018. Contains 318049 sequences. (Running on oeis4.)