login
A095145
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 12.
12
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 8, 3, 6, 1, 1, 7, 9, 11, 11, 9, 7, 1, 1, 8, 4, 8, 10, 8, 4, 8, 1, 1, 9, 0, 0, 6, 6, 0, 0, 9, 1, 1, 10, 9, 0, 6, 0, 6, 0, 9, 10, 1, 1, 11, 7, 9, 6, 6, 6, 6, 9, 7, 11, 1, 1, 0, 6, 4, 3, 0, 0, 0, 3, 4, 6, 0, 1, 1, 1, 6, 10, 7, 3, 0, 0, 3
OFFSET
0,5
FORMULA
T(i, j) = binomial(i, j) mod 12.
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 12]
CROSSREFS
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), (this sequence) (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A061676 A180182 A275198 * A095144 A339359 A144398
KEYWORD
easy,nonn,tabl
AUTHOR
Robert G. Wilson v, May 29 2004
STATUS
approved