

A095145


Triangle formed by reading Pascal's triangle (A007318) mod 12.


13



1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 8, 3, 6, 1, 1, 7, 9, 11, 11, 9, 7, 1, 1, 8, 4, 8, 10, 8, 4, 8, 1, 1, 9, 0, 0, 6, 6, 0, 0, 9, 1, 1, 10, 9, 0, 6, 0, 6, 0, 9, 10, 1, 1, 11, 7, 9, 6, 6, 6, 6, 9, 7, 11, 1, 1, 0, 6, 4, 3, 0, 0, 0, 3, 4, 6, 0, 1, 1, 1, 6, 10, 7, 3, 0, 0, 3
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


LINKS

Table of n, a(n) for n=0..99.


FORMULA

T(i, j) = binomial(i, j) (mod 12).


MATHEMATICA

Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 12]


CROSSREFS

Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A095143, A008975, A095144, A034932.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A061676 A180182 A275198 * A095144 A144398 A034932
Adjacent sequences: A095142 A095143 A095144 * A095146 A095147 A095148


KEYWORD

easy,nonn,tabl


AUTHOR

Robert G. Wilson v, May 29 2004


STATUS

approved



