login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095140
Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 5.
12
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 1, 4, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 3, 3, 1, 0, 1, 3, 3, 1, 1, 4, 1, 4, 1, 1, 4, 1, 4, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 2, 4, 2, 0, 0, 1, 2, 1, 1, 3, 3, 1, 0, 2, 1, 1, 2, 0, 1, 3, 3, 1
OFFSET
0,5
COMMENTS
{T(n,k)} is a fractal gasket with fractal (Hausdorff) dimension log(A000217(5))/log(5) = log(15)/log(5) = 1.68260... (see Reiter reference). Replacing values greater than 1 with 1 produces a binary gasket with the same dimension (see Bondarenko reference). - Richard L. Ollerton, Dec 14 2021
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, Santa Clara, Calif.: The Fibonacci Association, 1993, pp. 130-132.
FORMULA
T(i, j) = binomial(i, j) mod 5.
MATHEMATICA
Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], 5]
CROSSREFS
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), (this sequence) (m = 5), A095141 (m = 6), A095142 (m = 7), A034930(m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Sequence in context: A370399 A095141 A177974 * A225043 A125605 A110570
KEYWORD
easy,nonn,tabl
AUTHOR
Robert G. Wilson v, May 29 2004
STATUS
approved