The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027948 Triangular array T read by rows: T(n,k) = t(n,2k+1) for 0 <= k <= n, T(n,n)=1, t given by A027926, n >= 0. 13
 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 7, 4, 1, 1, 3, 8, 14, 5, 1, 1, 3, 8, 20, 25, 6, 1, 1, 3, 8, 21, 46, 41, 7, 1, 1, 3, 8, 21, 54, 97, 63, 8, 1, 1, 3, 8, 21, 55, 133, 189, 92, 9, 1, 1, 3, 8, 21, 55, 143, 309, 344, 129, 10, 1, 1, 3, 8, 21, 55, 144, 364, 674, 591, 175, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA T(n,k) = Sum_{j=0..n-k} binomial(n-j, 2*(n-k-j) -1) with T(n,n)=1 in the region n >= 0, 0 <= k <= n. - G. C. Greubel, Sep 29 2019 EXAMPLE Triangle begins with:   1;   1, 1;   1, 2, 1;   1, 3, 3,  1;   1, 3, 7,  4,  1;   1, 3, 8, 14,  5,  1;   1, 3, 8, 20, 25,  6, 1;   1, 3, 8, 21, 46, 41, 7, 1; ... MAPLE T:= proc(n, k)       if k=n then 1       else add(binomial(n-j, 2*(n-k-j)-1), j=0..n-k)       fi     end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Sep 29 2019 MATHEMATICA T[n_, k_]:= If[k==n, 1, Sum[Binomial[n-j, 2*(n-k-j)-1], {j, 0, n-k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 29 2019 *) PROG (PARI) T(n, k) = if(k==n, 1, sum(j=0, n-k, binomial(n-j, 2*(n-k-j)-1)) ); for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Sep 29 2019 (MAGMA) T:= func< n, k | k eq n select 1 else &+[Binomial(n-j, 2*(n-k-j) -1): j in [0..n-k]] >; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2019 (Sage) def T(n, k):     if (k==n): return 1     else: return sum(binomial(n-j, 2*(n-k-j)-1) for j in (0..n-k)) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 29 2019 (GAP) T:= function(n, k)     if k=n then return 1;     else return Sum([0..n-k], j-> Binomial(n-j, 2*(n-k-j)-1) );     fi;   end; Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Sep 29 2019 CROSSREFS The row sums of this (slightly extended) bisection of the "Fibonacci array" A027926 are powers of 2, see A027935 for the other bisection. Sequence in context: A174447 A174374 A242641 * A095141 A177974 A095140 Adjacent sequences:  A027945 A027946 A027947 * A027949 A027950 A027951 KEYWORD nonn,tabl AUTHOR EXTENSIONS Name edited by G. C. Greubel, Sep 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 14:39 EDT 2020. Contains 334626 sequences. (Running on oeis4.)