). It is thus known as the
(this notation was introduced in his paper).
, i.e. for
.
Within the critical strip, i.e. for
To the left of the critical strip, i.e. for
.
.
.
.
. The values for
).
Riemann zeta function for even integers
|
|
Decimal expansion (Sequence of decimal digits)
|
A-number
|
0
|
|
− 0.5 {5}
|
|
2
|
|
1.644934066848226436472415166646... {1, 6, 4, 4, 9, 3, 4, 0, 6, 6, 8, 4, 8, 2, 2, 6, 4, 3, 6, 4, 7, 2, 4, 1, 5, 1, 6, 6, 6, 4, 6, 0, 2, 5, 1, 8, 9, 2, 1, 8, 9, 4, 9, 9, 0, 1, 2, 0, 6, 7, 9, 8, 4, 3, 7, 7, 3, 5, 5, 5, ...}
|
A013661
|
4
|
|
1.082323233711138191516003696541... {1, 0, 8, 2, 3, 2, 3, 2, 3, 3, 7, 1, 1, 1, 3, 8, 1, 9, 1, 5, 1, 6, 0, 0, 3, 6, 9, 6, 5, 4, 1, 1, 6, 7, 9, 0, 2, 7, 7, 4, 7, 5, 0, 9, 5, 1, 9, 1, 8, 7, 2, 6, 9, 0, 7, 6, 8, 2, 9, 7, ...}
|
A013662
|
6
|
|
1.0173430619844491397145179297909... {1, 0, 1, 7, 3, 4, 3, 0, 6, 1, 9, 8, 4, 4, 4, 9, 1, 3, 9, 7, 1, 4, 5, 1, 7, 9, 2, 9, 7, 9, 0, 9, 2, 0, 5, 2, 7, 9, 0, 1, 8, 1, 7, 4, 9, 0, 0, 3, 2, 8, 5, 3, 5, 6, 1, 8, 4, 2, 4, 0, ...}
|
A013664
|
8
|
|
1.004077356197944339378685238508... {1, 0, 0, 4, 0, 7, 7, 3, 5, 6, 1, 9, 7, 9, 4, 4, 3, 3, 9, 3, 7, 8, 6, 8, 5, 2, 3, 8, 5, 0, 8, 6, 5, 2, 4, 6, 5, 2, 5, 8, 9, 6, 0, 7, 9, 0, 6, 4, 9, 8, 5, 0, 0, 2, 0, 3, 2, 9, 1, 1, ...}
|
A013666
|
10
|
|
1.0009945751278180853371459589003... {1, 0, 0, 0, 9, 9, 4, 5, 7, 5, 1, 2, 7, 8, 1, 8, 0, 8, 5, 3, 3, 7, 1, 4, 5, 9, 5, 8, 9, 0, 0, 3, 1, 9, 0, 1, 7, 0, 0, 6, 0, 1, 9, 5, 3, 1, 5, 6, 4, 4, 7, 7, 5, 1, 7, 2, 5, 7, 7, 8, ...}
|
A013668
|
12
|
|
1.0002460865533080482986379980477... {1, 0, 0, 0, 2, 4, 6, 0, 8, 6, 5, 5, 3, 3, 0, 8, 0, 4, 8, 2, 9, 8, 6, 3, 7, 9, 9, 8, 0, 4, 7, 7, 3, 9, 6, 7, 0, 9, 6, 0, 4, 1, 6, 0, 8, 8, 4, 5, 8, 0, 0, 3, 4, 0, 4, 5, 3, 3, 0, 4, ...}
|
A013670
|
14
|
|
1.00006124813505870482925854510513... {1, 0, 0, 0, 0, 6, 1, 2, 4, 8, 1, 3, 5, 0, 5, 8, 7, 0, 4, 8, 2, 9, 2, 5, 8, 5, 4, 5, 1, 0, 5, 1, 3, 5, 3, 3, 3, 7, 4, 7, 4, 8, 1, 6, 9, 6, 1, 6, 9, 1, 5, 4, 5, 4, 9, 4, 8, 2, 7, 5, ...}
|
A013672
|
16
|
|
1.0000152822594086518717325714876367... {1, 0, 0, 0, 0, 1, 5, 2, 8, 2, 2, 5, 9, 4, 0, 8, 6, 5, 1, 8, 7, 1, 7, 3, 2, 5, 7, 1, 4, 8, 7, 6, 3, 6, 7, 2, 2, 0, 2, 3, 2, 3, 7, 3, 8, 8, 9, 9, 0, 4, 7, 1, 5, 3, 1, 1, 5, 3, 1, 0, ...}
|
A013674
|
18
|
|
1.0000038172932649998398564616446219... {1, 0, 0, 0, 0, 0, 3, 8, 1, 7, 2, 9, 3, 2, 6, 4, 9, 9, 9, 8, 3, 9, 8, 5, 6, 4, 6, 1, 6, 4, 4, 6, 2, 1, 9, 3, 9, 7, 3, 0, 4, 5, 4, 6, 9, 7, 2, 1, 8, 9, 5, 3, 3, 3, 1, 1, 4, 3, 1, 7, ...}
|
A013676
|
20
|
|
1.0000009539620338727961131520386834... {1, 0, 0, 0, 0, 0, 0, 9, 5, 3, 9, 6, 2, 0, 3, 3, 8, 7, 2, 7, 9, 6, 1, 1, 3, 1, 5, 2, 0, 3, 8, 6, 8, 3, 4, 4, 9, 3, 4, 5, 9, 4, 3, 7, 9, 4, 1, 8, 7, 4, 1, 0, 5, 9, 5, 7, 5, 0, 0, 5, ...}
|
A013678
|
function.
is the cotangent function.
has no known closed-form formula. It is not known whether those values are
.
Riemann zeta function for odd integers
|
|
Decimal expansion (Sequence of decimal digits)
|
A-number
|
1
|
Pole (of order 1)
|
(this is the unique pole, of order 1, of the Riemann zeta function) ( gives the harmonic series)
|
|
3
|
|
1.2020569031595942853997381615114... {1, 2, 0, 2, 0, 5, 6, 9, 0, 3, 1, 5, 9, 5, 9, 4, 2, 8, 5, 3, 9, 9, 7, 3, 8, 1, 6, 1, 5, 1, 1, 4, 4, 9, 9, 9, 0, 7, 6, 4, 9, 8, 6, 2, 9, 2, 3, 4, 0, 4, 9, 8, 8, 8, 1, 7, 9, 2, 2, 7, ...}
|
A002117
|
5
|
|
1.036927755143369926331365486457... {1, 0, 3, 6, 9, 2, 7, 7, 5, 5, 1, 4, 3, 3, 6, 9, 9, 2, 6, 3, 3, 1, 3, 6, 5, 4, 8, 6, 4, 5, 7, 0, 3, 4, 1, 6, 8, 0, 5, 7, 0, 8, 0, 9, 1, 9, 5, 0, 1, 9, 1, 2, 8, 1, 1, 9, 7, 4, 1, 9, ...}
|
A013663
|
7
|
|
1.008349277381922826839797549849... {1, 0, 0, 8, 3, 4, 9, 2, 7, 7, 3, 8, 1, 9, 2, 2, 8, 2, 6, 8, 3, 9, 7, 9, 7, 5, 4, 9, 8, 4, 9, 7, 9, 6, 7, 5, 9, 5, 9, 9, 8, 6, 3, 5, 6, 0, 5, 6, 5, 2, 3, 8, 7, 0, 6, 4, 1, 7, 2, 8, ...}
|
A013665
|
9
|
|
1.002008392826082214417852769232... {1, 0, 0, 2, 0, 0, 8, 3, 9, 2, 8, 2, 6, 0, 8, 2, 2, 1, 4, 4, 1, 7, 8, 5, 2, 7, 6, 9, 2, 3, 2, 4, 1, 2, 0, 6, 0, 4, 8, 5, 6, 0, 5, 8, 5, 1, 3, 9, 4, 8, 8, 8, 7, 5, 6, 5, 4, 8, 5, 9, ...}
|
A013667
|
11
|
|
1.000494188604119464558702282526... {1, 0, 0, 0, 4, 9, 4, 1, 8, 8, 6, 0, 4, 1, 1, 9, 4, 6, 4, 5, 5, 8, 7, 0, 2, 2, 8, 2, 5, 2, 6, 4, 6, 9, 9, 3, 6, 4, 6, 8, 6, 0, 6, 4, 3, 5, 7, 5, 8, 2, 0, 8, 6, 1, 7, 1, 1, 9, 1, 4, ...}
|
A013669
|
13
|
|
1.000122713347578489146751836526... {1, 0, 0, 0, 1, 2, 2, 7, 1, 3, 3, 4, 7, 5, 7, 8, 4, 8, 9, 1, 4, 6, 7, 5, 1, 8, 3, 6, 5, 2, 6, 3, 5, 7, 3, 9, 5, 7, 1, 4, 2, 7, 5, 1, 0, 5, 8, 9, 5, 5, 0, 9, 8, 4, 5, 1, 3, 6, 7, 0, ...}
|
A013671
|
15
|
|
1.000030588236307020493551728510...
{1, 0, 0, 0, 0, 3, 0, 5, 8, 8, 2, 3, 6, 3, 0, 7, 0, 2, 0, 4, 9, 3, 5, 5, 1, 7, 2, 8, 5, 1, 0, 6, 4, 5, 0, 6, 2, 5, 8, 7, 6, 2, 7, 9, 4, 8, 7, 0, 6, 8, 5, 8, 1, 7, 7, 5, 0, 6, 5, 6, ...}
|
A013673
|
17
|
|
1.000007637197637899762273600293...
{1, 0, 0, 0, 0, 0, 7, 6, 3, 7, 1, 9, 7, 6, 3, 7, 8, 9, 9, 7, 6, 2, 2, 7, 3, 6, 0, 0, 2, 9, 3, 5, 6, 3, 0, 2, 9, 2, 1, 3, 0, 8, 8, 2, 4, 9, 0, 9, 0, 2, 6, 2, 6, 7, 9, 0, 9, 5, 3, 7, ...}
|
A013675
|
19
|
|
1.00000190821271655393892565695779...
{1, 0, 0, 0, 0, 0, 1, 9, 0, 8, 2, 1, 2, 7, 1, 6, 5, 5, 3, 9, 3, 8, 9, 2, 5, 6, 5, 6, 9, 5, 7, 7, 9, 5, 1, 0, 1, 3, 5, 3, 2, 5, 8, 5, 7, 1, 1, 4, 4, 8, 3, 8, 6, 3, 0, 2, 3, 5, 9, 3, ...}
|
A013677
|
.
The Riemann zeta function may be expressed in terms of the nontrivial zeros as (note the pole of order
, in the lower half of the complex plane.
Since many “conditional proofs” assume the truth of the conjecture, it became known as the
. The nontrivial zeros reveal information about the
, the more regular the distribution of the primes.
Table of nontrivial zeros[5]
|
Imaginary part (base 10) of th nontrivial zero (above the real axis)
|
OEIS
|
1
|
14.134725141734693790457251983562470270784257115699243175685567460149...
|
A058303
|
2
|
21.022039638771554992628479593896902777334340524902781754629520403587...
|
A065434
|
3
|
25.010857580145688763213790992562821818659549672557996672496542006745...
|
A065452
|
4
|
30.424876125859513210311897530584091320181560023715440180962146036993...
|
A065453
|
5
|
32.935061587739189690662368964074903488812715603517039009280003440784...
|
A192492
|
6
|
37.586178158825671257217763480705332821405597350830793218333001113622...
|
|
7
|
40.918719012147495187398126914633254395726165962777279536161303667253...
|
|
8
|
43.327073280914999519496122165406805782645668371836871446878893685521...
|
|
9
|
48.005150881167159727942472749427516041686844001144425117775312519814...
|
|
10
|
49.773832477672302181916784678563724057723178299676662100781955750433...
|
|
11
|
52.970321477714460644147296608880990063825017888821224779900748140317...
|
|
12
|
56.446247697063394804367759476706127552782264471716631845450969843958...
|
|
13
|
59.347044002602353079653648674992219031098772806466669698122451754746...
|
|
14
|
60.831778524609809844259901824524003802910090451219178257101348824808...
|
|
15
|
65.112544048081606660875054253183705029348149295166722405966501086675...
|
|
16
|
67.079810529494173714478828896522216770107144951745558874196669551694...
|
|
17
|
69.546401711173979252926857526554738443012474209602510157324539999663...
|
|
18
|
72.067157674481907582522107969826168390480906621456697086683306151488...
|
|
19
|
75.704690699083933168326916762030345922811903530697400301647775301574...
|
|
20
|
77.144840068874805372682664856304637015796032449234461041765231453151...
|
|
21
|
79.337375020249367922763592877116228190613246743120030878438720497101...
|
|
22
|
82.910380854086030183164837494770609497508880593782149146571306283235...
|
|
23
|
84.735492980517050105735311206827741417106627934240818702735529689045...
|
|
24
|
87.425274613125229406531667850919213252171886401269028186455557938439...
|
|
25
|
88.809111207634465423682348079509378395444893409818675042199871618814...
|
|
26
|
92.491899270558484296259725241810684878721794027730646175096750489181...
|
|
27
|
94.651344040519886966597925815208153937728027015654852019592474274513...
|
|
28
|
95.870634228245309758741029219246781695256461224987998420529281651651...
|
|
29
|
98.831194218193692233324420138622327820658039063428196102819321727565...
|
|
30
|
101.31785100573139122878544794029230890633286638430089479992831871523...
|
|
31
|
103.72553804047833941639840810869528083448117306949576451988516579403...
|
|
32
|
105.44662305232609449367083241411180899728275392853513848056944711418...
|
|
33
|
107.16861118427640751512335196308619121347670788140476527926471042155...
|
|
34
|
111.02953554316967452465645030994435041534596839007305684619079476550...
|
|
35
|
111.87465917699263708561207871677059496031174987338587381661941961969...
|
|
36
|
114.32022091545271276589093727619107980991765772382989228772843104130...
|
|
37
|
116.22668032085755438216080431206475512732985123238322028386264231147...
|
|
38
|
118.79078286597621732297913970269982434730621059280938278419371651419...
|
|
39
|
121.37012500242064591894553297049992272300131063172874230257513263573...
|
|
40
|
122.94682929355258820081746033077001649621438987386351721195003491528...
|
|
41
|
124.25681855434576718473200796612992444157353877469356114035507691395...
|
|
42
|
127.51668387959649512427932376690607626808830988155498248279977930068...
|
|
43
|
129.57870419995605098576803390617997360864095326465943103047083999886...
|
|
44
|
131.08768853093265672356637246150134905920354750297504538313992440777...
|
|
45
|
133.49773720299758645013049204264060766497417494390467501510225885516...
|
|
46
|
134.75650975337387133132606415716973617839606861364716441697609317354...
|
|
47
|
138.11604205453344320019155519028244785983527462414623568534482856865...
|
|
48
|
139.73620895212138895045004652338246084679005256538260308137013541090...
|
|
49
|
141.12370740402112376194035381847535509030066087974762003210466509596...
|
|
50
|
143.11184580762063273940512386891392996623310243035463254859852295728...
|
|
-th zero of Riemann zeta function.
.
Gaps between the nontrivial zeros of Riemann zeta function, rounded to nearest integers, with
.
Consider the nontrivial zeros of the Riemann zeta function on the critical line,
.
tells where the second difference of the imaginary part is positive (denoted by
).
These are the locations of the midpoints of consecutive zeros of the Riemann zeta function on the
with increasingly large normalized spacing; equivalently, of consecutive real zeros of the
. If
. The sequence above is found by taking
and rounding to the nearest integer. These values
have a marked tendency to be close to integer values and all of the terms of the above sequence are actually contained in the intervals
.
These are the locations of the increasingly larger peaks of the absolute value of the Riemann zeta function along the
. Equivalently, the locations of the increasingly large peaks of the absolute value of the
. If
is the peak value. We renormalize
and round to the nearest integer to get the terms of the sequence. The fractional parts of these values are not randomly distributed;
shows a very strong tendency to be near an integer.
Locations of the increasing peak values of the integral of the absolute value of the Riemann zeta function between successive zeros on the critical line. This can also be defined in terms of the
. For each successively higher value of this integral, the corresponding term of the integer sequence is
rounded to the nearest integer.