login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135297 Number of Riemann zeta function zeros on the critical line, less than n. 8
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 14, 14, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 26, 26, 27, 28, 28, 28, 29, 29 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,22
COMMENTS
This sequence is just the cumulative distribution of the zeros.
Apart from differing singularities, the beginning of this sequence agrees with the zeta zero counting functions (RiemannSiegelTheta(n) + im(log(zeta(1/2 + i*n))))/Pi + 1 and (sign(im(zeta(1/2 + i*n))) - 1)/2 + floor(n/(2*Pi)*log(n/(2*Pi*e)) + 7/8) + 1, but disagrees later. The first deviations are seen in the continuous counting function at locations of zeta zeros with indices A153815. See also A282793 and A282794. - Mats Granvik, Feb 21 2017
REFERENCES
H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0)
LINKS
Andrew Guinand, A summation formula in the theory of prime numbers, Proc. London Math. Soc. (1948) s2-50 (1): 107-119, see page 111.
Raymond Manzoni, Riemann Zeta function - number of zeros, Mathematics Stackexchange, 2013.
FORMULA
a(n) ~ n log (n/(2*Pi*e)) / (2*Pi). - Charles R Greathouse IV, Mar 11 2011, corrected by Hal M. Switkay, Oct 03 2021
From Mats Granvik, May 13 2017: (Start)
a(n) ~ im(LogGamma(1/4 + i*n/2))/Pi - n/(2*Pi)*log(Pi) + im(log(zeta(1/2 + i*n)))/Pi + 1.
a(n) ~ floor(im(LogGamma(1/4 + i*n/2))/Pi - n/(2*Pi)*log(Pi) + 1) + (sign(im(zeta (1/2 + i*n))) - 1)/2 + 1.
a(n) ~ (RiemannSiegelTheta(n) + im(log(zeta(1/2 + i*n))))/Pi + 1.
a(n) ~ (floor(RiemannSiegelTheta(n)/Pi + 1)) + (sign(im(zeta(1/2 + i*n))) - 1)/2 + 1.
a(n) ~ n/(2*Pi)*log(n/(2*Pi*e)) + 7/8 + (im(log(zeta(1/2 + i*n))))/Pi - 1 - O(n^(-1)) + 1.
a(n) ~ floor(n/(2*Pi)*log(n/(2*Pi*e)) + 7/8) + (sign(im(zeta(1/2 + i*n))) - 1)/2 + 1.
See A286707 for exact relations.
(End)
EXAMPLE
The first nontrivial zero is 1/2 + 14.1347...*i; hence, a(15)=1.
MATHEMATICA
nn = 100; t = Table[0, {nn}]; k = 1; While[z = Im[ZetaZero[k]]; z < nn, k++; t[[Ceiling[z] ;; nn]]++]
With[{zz=Ceiling[Im[N[ZetaZero[Range[30]]]]]}, Table[If[MemberQ[zz, n], 1, 0], {n, Max[zz]}]]//Accumulate (* Harvey P. Dale, Aug 15 2017 *)
PROG
(Sage)
# This function makes sure no zeros are missed.
def A135297_list(n):
Z = lcalc.zeros(n)
R = []; pos = 1; count = 0
for z in Z:
while pos < z:
R.append(count)
pos += 1
count += 1
return R
A135297_list(30) # Peter Luschny, May 02 2014
(PARI) a(n) = #lfunzeros(L, n) \\ Felix Fröhlich, Jun 10 2019
CROSSREFS
Sequence in context: A108956 A289133 A367194 * A176146 A171481 A230775
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)