login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013676
Decimal expansion of zeta(18).
10
1, 0, 0, 0, 0, 0, 3, 8, 1, 7, 2, 9, 3, 2, 6, 4, 9, 9, 9, 8, 3, 9, 8, 5, 6, 4, 6, 1, 6, 4, 4, 6, 2, 1, 9, 3, 9, 7, 3, 0, 4, 5, 4, 6, 9, 7, 2, 1, 8, 9, 5, 3, 3, 3, 1, 1, 4, 3, 1, 7, 4, 4, 2, 9, 9, 8, 7, 6, 3, 0, 0, 3, 9, 5, 4, 2, 6, 5, 0, 0, 4, 5, 6, 3, 8, 0, 0, 1, 9, 6, 8, 6, 6, 8, 9, 8, 9, 6, 4
OFFSET
1,7
REFERENCES
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
LINKS
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
zeta(18) = Sum_{n >= 1} (A010052(n)/n^9) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^9 ). - Mikael Aaltonen, Mar 06 2015
zeta(18) = 43867*Pi^18/38979295480125 = A046988(9)*Pi^18/A002432(9). - Alonso del Arte, Feb 12 2016
zeta(18) = Product_{k>=1} 1/(1 - 1/prime(k)^18). - Vaclav Kotesovec, May 02 2020
EXAMPLE
1.0000038172932649998398564616446219397...
MATHEMATICA
RealDigits[Zeta[18], 10, 100][[1]] (* Alonso del Arte, Feb 07 2016 *)
PROG
(PARI) zeta(18) \\ Michel Marcus, Feb 12 2016
CROSSREFS
Sequence in context: A219995 A021266 A054399 * A199270 A131563 A016622
KEYWORD
cons,nonn
STATUS
approved