

A013668


Decimal expansion of zeta(10).


6



1, 0, 0, 0, 9, 9, 4, 5, 7, 5, 1, 2, 7, 8, 1, 8, 0, 8, 5, 3, 3, 7, 1, 4, 5, 9, 5, 8, 9, 0, 0, 3, 1, 9, 0, 1, 7, 0, 0, 6, 0, 1, 9, 5, 3, 1, 5, 6, 4, 4, 7, 7, 5, 1, 7, 2, 5, 7, 7, 8, 8, 9, 9, 4, 6, 3, 6, 2, 9, 1, 4, 6, 5, 1, 5, 1, 9, 1, 2, 9, 5, 4, 3, 9, 7, 0, 4, 1, 9, 6, 8, 6, 1, 0, 3, 8, 5, 6, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.


LINKS

Table of n, a(n) for n=1..99.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].


FORMULA

Equals Pi^10/93555.
zeta(10) = 4/3*2^10/(2^10  1)*( sum {n even} n^2*p(n)/(n^2  1)^11 ), where p(n) = 3*n^10 + 55*n^8 + 198*n^6 + 198*n^4 + 55*n^2 + 3 is a row polynomial of A091043.  Peter Bala, Dec 05 2013


CROSSREFS

Cf. A013662, A013664, A013666, A013670.
Sequence in context: A249023 A019893 A117023 * A143302 A202540 A218708
Adjacent sequences: A013665 A013666 A013667 * A013669 A013670 A013671


KEYWORD

cons,nonn


AUTHOR

N. J. A. Sloane.


STATUS

approved



