

A013670


Decimal expansion of zeta(12).


4



1, 0, 0, 0, 2, 4, 6, 0, 8, 6, 5, 5, 3, 3, 0, 8, 0, 4, 8, 2, 9, 8, 6, 3, 7, 9, 9, 8, 0, 4, 7, 7, 3, 9, 6, 7, 0, 9, 6, 0, 4, 1, 6, 0, 8, 8, 4, 5, 8, 0, 0, 3, 4, 0, 4, 5, 3, 3, 0, 4, 0, 9, 5, 2, 1, 3, 3, 2, 5, 2, 0, 1, 9, 6, 8, 1, 9, 4, 0, 9, 1, 3, 0, 4, 9, 0, 4, 2, 8, 0, 8, 5, 5, 1, 9, 0, 0, 6, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.


LINKS

Table of n, a(n) for n=1..99.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].


FORMULA

zeta(12) = 2/3*2^12/(2^12  1)*( sum {n even} n^2*p(n)/(n^2  1)^13 ), where p(n) = 7*n^12 + 182*n^10 + 1001*n^8 + 1716*n^6 + 1001*n^4 + 182*n^2 + 7 is a row polynomial of A091043.  Peter Bala, Dec 05 2013


MATHEMATICA

RealDigits[Zeta[12], 10, 120][[1]] (* Harvey P. Dale, Apr 30 2013 *)


CROSSREFS

Cf. A013662, A013664, A013666, A013668.
Sequence in context: A141062 A131806 A004518 * A121206 A062004 A009285
Adjacent sequences: A013667 A013668 A013669 * A013671 A013672 A013673


KEYWORD

cons,nonn


AUTHOR

N. J. A. Sloane.


STATUS

approved



