

A192492


Decimal expansion of imaginary part of 5th nontrivial zero of Riemann zeta function.


13



3, 2, 9, 3, 5, 0, 6, 1, 5, 8, 7, 7, 3, 9, 1, 8, 9, 6, 9, 0, 6, 6, 2, 3, 6, 8, 9, 6, 4, 0, 7, 4, 9, 0, 3, 4, 8, 8, 8, 1, 2, 7, 1, 5, 6, 0, 3, 5, 1, 7, 0, 3, 9, 0, 0, 9, 2, 8, 0, 0, 0, 3, 4, 4, 0, 7, 8, 4, 8, 1, 5, 6, 0, 8, 6, 3, 0, 5, 5, 1, 0, 0, 5, 9, 3, 8, 8, 4, 8, 4, 9, 6, 1, 3, 5, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

The real part of the 5th nontrivial zero is of course 1/2 (A020761; the Riemann hypothesis is here assumed to be true).


LINKS

Table of n, a(n) for n=2..97.
Andrew M. Odlyzko, The first 100 (non trivial) zeros of the Riemann Zeta function, to over 1000 decimal digits each, AT&T Labs  Research.
Andrew M. Odlyzko, Tables of zeros of the Riemann zeta function


EXAMPLE

The zero is at 1/2 + i * 32.9350615877391896906623689640749...


MATHEMATICA

(* ZetaZero was introduced in Version 6.0 *) RealDigits[ZetaZero[5], 10, 100][[1]]


PROG

(PARI) solve(y=32, 33, real(zeta(1/2+y*I))) \\ Charles R Greathouse IV, Mar 10 2016
(PARI) lfunzeros(lzeta, [32, 33])[1] \\ Charles R Greathouse IV, Mar 10 2016


CROSSREFS

Cf. A002410: nearest integer to imaginary part of nth zero of Riemann zeta function (main entry); also A013629 (floor) and A092783 (ceiling).
The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). Others are A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
The real parts of the trivial zeros are given by A005843 multiplied by 1 (and ignoring the initial 0 of that sequence).
Sequence in context: A228936 A169862 A245884 * A104005 A224578 A134562
Adjacent sequences: A192489 A192490 A192491 * A192493 A192494 A192495


KEYWORD

nonn,cons


AUTHOR

Alonso del Arte, Jul 02 2011


EXTENSIONS

Example and crossreferences edited by M. F. Hasler, Nov 23 2018


STATUS

approved



