The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294774 a(n) = 2*n^2 + 2*n + 5. 2
 5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the case k = 9 of 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 (similar sequences are listed in Crossrefs section). Note that: 2*( 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 ) - k = ( 2*n + (1-(-1)^k)/2 )^2. From this follows an alternative definition for the sequence: Numbers h such that 2*h - 9 is a square. Therefore, if a(n) is a square then its base is a term of A075841. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA O.g.f.: (5 - 6*x + 5*x^2)/(1 - x)^3. E.g.f.: (5 + 4*x + 2*x^2)*exp(x). a(n) = a(-1-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). a(n) = 5*A000217(n+1) - 6*A000217(n) + 5*A000217(n-1). n*a(n) - Sum_{j=0..n-1} a(j) = A002492(n) for n>0. a(n) = Integral_{x=0..2n+4} |3-x| dx. - Pedro Caceres, Dec 29 2020 MAPLE seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017 MATHEMATICA Table[2n^2+2n+5, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {5, 9, 17}, 50] (* Harvey P. Dale, Sep 18 2023 *) PROG (PARI) Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017 CROSSREFS 1st diagonal of A154631, 3rd diagonal of A055096, 4th diagonal of A070216. Second column of Mathar's array in A016813 (Comments section). Subsequence of A001481, A001983, A004766, A020668, A046711 and A057653 (because a(n) = (n+2)^2 + (n-1)^2); A097268 (because it is also a(n) = (n^2+n+3)^2 - (n^2+n+2)^2); A047270; A243182 (for y=1). Similar sequences (see the first comment): A161532 (k=-14), A181510 (k=-13), A152811 (k=-12), A222182 (k=-11), A271625 (k=-10), A139570 (k=-9), (-1)*A147973 (k=-8), A059993 (k=-7), A268581 (k=-6), A090288 (k=-5), A054000 (k=-4), A142463 or A132209 (k=-3), A056220 (k=-2), A046092 (k=-1), A001105 (k=0), A001844 (k=1), A058331 (k=2), A051890 (k=3), A271624 (k=4), A097080 (k=5), A093328 (k=6), A271649 (k=7), A255843 (k=8), this sequence (k=9). Sequence in context: A175543 A200078 A190806 * A192746 A081295 A180565 Adjacent sequences: A294771 A294772 A294773 * A294775 A294776 A294777 KEYWORD nonn,easy AUTHOR Bruno Berselli, Nov 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 02:40 EST 2023. Contains 367505 sequences. (Running on oeis4.)