login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294771
Number of permutations of [n] avoiding {4231, 2341, 4123}.
1
1, 1, 2, 6, 21, 75, 259, 862, 2808, 9090, 29489, 96076, 314011, 1027749, 3364559, 11012071, 36033146, 117891838, 385711145, 1261999184, 4129291969, 13511534900, 44211907218, 144668866862, 473380823897, 1548980397627, 5068520414694, 16585048409912, 54269098388346, 177577820365484
OFFSET
0,3
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 152.
Index entries for linear recurrences with constant coefficients, signature (10,-42,99,-144,134,-83,31,-5).
FORMULA
From Colin Barker, Apr 25 2020: (Start)
G.f.: (1 - x)^6*(1 - 3*x + x^2) / (1 - 10*x + 42*x^2 - 99*x^3 + 144*x^4 - 134*x^5 + 83*x^6 - 31*x^7 + 5*x^8).
a(n) = 10*a(n-1) - 42*a(n-2) + 99*a(n-3) - 144*a(n-4) + 134*a(n-5) - 83*a(n-6) + 31*a(n-7) - 5*a(n-8) for n>8.
(End)
MAPLE
(x-1)^6*(x^2-3*x+1)/(5*x^8-31*x^7+83*x^6-134*x^5+144*x^4-99*x^3+42*x^2-10*x+1) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
PROG
(PARI) Vec((1 - x)^6*(1 - 3*x + x^2) / (1 - 10*x + 42*x^2 - 99*x^3 + 144*x^4 - 134*x^5 + 83*x^6 - 31*x^7 + 5*x^8) + O(x^30)) \\ Colin Barker, Apr 25 2020
CROSSREFS
Sequence in context: A116814 A294806 A294807 * A294814 A116816 A116742
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 08 2017
STATUS
approved