login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294770
Number of permutations of [n] avoiding {4231, 4123, 1234}.
1
1, 1, 2, 6, 21, 75, 253, 774, 2130, 5314, 12169, 25895, 51756, 98034, 177282, 307933, 516327, 839223, 1326868, 2046700, 3087767, 4565949, 6630075, 9469032, 13319968, 18477696, 25305411, 34246837, 45839926, 60732236, 79698120, 103657863, 133698909, 171099325, 217353654, 274201314, 343657705
OFFSET
0,3
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 144.
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
G.f.: (1 - 8*x + 29*x^2 - 60*x^3 + 81*x^4 - 66*x^5 + 40*x^6 - 15*x^7 + 3*x^8) / (1 - x)^9.
From Colin Barker, Nov 11 2017: (Start)
a(n) = (40320 - 22704*n + 33868*n^2 - 16996*n^3 + 6405*n^4 - 616*n^5 + 42*n^6 - 4*n^7 + 5*n^8) / 40320.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
MAPLE
-(3*x^8-15*x^7+40*x^6-66*x^5+81*x^4-60*x^3+29*x^2-8*x+1)/(x-1)^9 ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
MATHEMATICA
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 1, 2, 6, 21, 75, 253, 774, 2130}, 40] (* Harvey P. Dale, Dec 24 2023 *)
PROG
(PARI) Vec((1 - 8*x + 29*x^2 - 60*x^3 + 81*x^4 - 66*x^5 + 40*x^6 - 15*x^7 + 3*x^8) / (1 - x)^9 + O(x^40)) \\ Colin Barker, Nov 11 2017
CROSSREFS
Sequence in context: A150186 A150187 A116818 * A116763 A116840 A116841
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 08 2017
STATUS
approved