login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] avoiding {4231, 2341, 4123}.
1

%I #14 Mar 21 2021 21:21:27

%S 1,1,2,6,21,75,259,862,2808,9090,29489,96076,314011,1027749,3364559,

%T 11012071,36033146,117891838,385711145,1261999184,4129291969,

%U 13511534900,44211907218,144668866862,473380823897,1548980397627,5068520414694,16585048409912,54269098388346,177577820365484

%N Number of permutations of [n] avoiding {4231, 2341, 4123}.

%H Colin Barker, <a href="/A294771/b294771.txt">Table of n, a(n) for n = 0..1000</a>

%H D. Callan, T. Mansour, <a href="http://arxiv.org/abs/1705.00933">Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns</a>, arXiv:1705.00933 [math.CO] (2017), Table 2 No 152.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (10,-42,99,-144,134,-83,31,-5).

%F From _Colin Barker_, Apr 25 2020: (Start)

%F G.f.: (1 - x)^6*(1 - 3*x + x^2) / (1 - 10*x + 42*x^2 - 99*x^3 + 144*x^4 - 134*x^5 + 83*x^6 - 31*x^7 + 5*x^8).

%F a(n) = 10*a(n-1) - 42*a(n-2) + 99*a(n-3) - 144*a(n-4) + 134*a(n-5) - 83*a(n-6) + 31*a(n-7) - 5*a(n-8) for n>8.

%F (End)

%p (x-1)^6*(x^2-3*x+1)/(5*x^8-31*x^7+83*x^6-134*x^5+144*x^4-99*x^3+42*x^2-10*x+1) ;

%p taylor(%,x=0,40) ;

%p gfun[seriestolist](%) ;

%o (PARI) Vec((1 - x)^6*(1 - 3*x + x^2) / (1 - 10*x + 42*x^2 - 99*x^3 + 144*x^4 - 134*x^5 + 83*x^6 - 31*x^7 + 5*x^8) + O(x^30)) \\ _Colin Barker_, Apr 25 2020

%K nonn,easy

%O 0,3

%A _R. J. Mathar_, Nov 08 2017