The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294775 Number A(n,k) of partitions of 1 into exactly k*n+1 powers of 1/(k+1); square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 5, 1, 1, 1, 1, 2, 4, 7, 9, 1, 1, 1, 1, 2, 4, 8, 13, 16, 1, 1, 1, 1, 2, 4, 8, 15, 25, 28, 1, 1, 1, 1, 2, 4, 8, 16, 29, 48, 50, 1, 1, 1, 1, 2, 4, 8, 16, 31, 57, 92, 89, 1, 1, 1, 1, 2, 4, 8, 16, 32, 61, 112, 176, 159, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,14 LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened Christian Elsholtz, Clemens Heuberger, Daniel Krenn, Algorithmic counting of nonequivalent compact Huffman codes, arXiv:1901.11343 [math.CO], 2019. Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075. EXAMPLE A(4,1) = 3: [1/4,1/4,1/4,1/8,1/8], [1/2,1/8,1/8,1/8,1/8], [1/2,1/4,1/8,1/16,1/16]. A(5,2) = 7: [1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/9,1/9,1/9,1/9,1/9,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27,1/27], [1/3,1/3,1/9,1/27,1/27,1/27,1/27,1/27,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/81,1/81,1/81,1/81,1/81,1/81], [1/3,1/3,1/9,1/9,1/27,1/27,1/81,1/81,1/243,1/243,1/243]. Square array A(n,k) begins:   1,  1,  1,  1,  1,  1,  1,  1,  1, ...   1,  1,  1,  1,  1,  1,  1,  1,  1, ...   1,  1,  1,  1,  1,  1,  1,  1,  1, ...   1,  2,  2,  2,  2,  2,  2,  2,  2, ...   1,  3,  4,  4,  4,  4,  4,  4,  4, ...   1,  5,  7,  8,  8,  8,  8,  8,  8, ...   1,  9, 13, 15, 16, 16, 16, 16, 16, ...   1, 16, 25, 29, 31, 32, 32, 32, 32, ...   1, 28, 48, 57, 61, 63, 64, 64, 64, ... MAPLE b:= proc(n, r, k) option remember;       `if`(n `if`(k=0, 1, b(k*n+1, 1, k+1)): seq(seq(A(n, d-n), n=0..d), d=0..14); MATHEMATICA b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n - j, k*(r - j), k], {j, 0, Min[n, r]}]]]; A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, k + 1]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Nov 11 2017, after Alois P. Heinz *) CROSSREFS Columns k=0-10 give (offsets may differ): A000012, A002572, A176485, A176503, A194628, A194629, A194630, A194631, A194632, A194633, A295081. Main diagonal gives A011782(n-1) for n>0. Cf. A294746. Sequence in context: A321744 A322763 A213211 * A330461 A332649 A321724 Adjacent sequences:  A294772 A294773 A294774 * A294776 A294777 A294778 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Nov 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 19:31 EDT 2021. Contains 345049 sequences. (Running on oeis4.)