login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194629 Arises in enumerating Huffman codes, compact trees, and sums of unit fractions. 4
1, 1, 1, 2, 4, 8, 16, 32, 63, 125, 249, 496, 988, 1968, 3920, 7808, 15552, 30978, 61705, 122910, 244824, 487664, 971376, 1934880, 3854082, 7676935, 15291665, 30459424, 60672040, 120852464, 240725680, 479500802, 955116293, 1902493446, 3789571321, 7548436410 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 6*p(k+1).  [Joerg Arndt, Dec 18 2012]

Row 5 of Table 1 of Elsholtz, row 1 being A002572, row 2 being A176485, row 3 being A176503, and row 4 being A194628.

LINKS

Table of n, a(n) for n=1..36.

Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1 [math.CO], Aug 30, 2011.

FORMULA

Empirical  g.f.: x*(x^15+x^9+x^8-x^7-x^2-x+1) / (3*x^8-x^7-2*x+1). - Colin Barker, May 09 2013

PROG

(PARI) /* see A002572, set t=6 */

CROSSREFS

Cf. A002572, A176485, A176503, A194628.

Sequence in context: A239558 A239559 A001592 * A251710 A217832 A251740

Adjacent sequences:  A194626 A194627 A194628 * A194630 A194631 A194632

KEYWORD

nonn

AUTHOR

Jonathan Vos Post, Aug 30 2011

EXTENSIONS

Added terms beyond a(20)=122910, Joerg Arndt, Dec 18 2012.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 21:14 EST 2016. Contains 278745 sequences.