login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194627
a(1)=1, a(n+1) = p(n)^2 + q(n)^2 + 1, where p(n) and q(n) are the number of prime and nonprime numbers respectively in the sequence so far.
3
1, 2, 3, 6, 9, 14, 21, 30, 41, 46, 59, 66, 81, 98, 117, 138, 161, 186, 213, 242, 273, 306, 341, 378, 417, 458, 501, 546, 593, 602, 651, 702, 755, 810, 867, 926, 987, 1050, 1115, 1182, 1251, 1322, 1395, 1470, 1547, 1626, 1707, 1790, 1875, 1962, 2051, 2142
OFFSET
1,2
LINKS
EXAMPLE
For n=1, we have no primes and one nonprime (a(1)=1), so a(2)=0^2+1^2+1=2. Now we have one prime (a(2)=2) and one nonprime, so a(3)=1^2+1^2+1=3.
MAPLE
R:= 1: v:= 1: p:= 0: q:= 0:
for i from 2 to 100 do
if isprime(v) then p:= p+1 else q:= q+1 fi;
v:= p^2 + q^2 + 1;
R:= R, v
od:
R; # Robert Israel, Nov 10 2024
MATHEMATICA
t = {1}; Do[ps = Count[t, _?(PrimeQ[#] &)]; AppendTo[t, ps^2 + (n - ps - 1)^2 + 1], {n, 2, 100}]; t (* T. D. Noe, Sep 15 2011 *)
PROG
(PARI) p=q=0; for(n=1, 50, print1(k=p^2+q^2+1", "); if(isprime(k), p++, q++)) \\ Charles R Greathouse IV, Sep 16 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Greg Knowles, Sep 15 2011
STATUS
approved