login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176503
Leading column of triangle in A176463.
11
1, 1, 1, 2, 4, 8, 15, 29, 57, 112, 220, 432, 848, 1666, 3273, 6430, 12632, 24816, 48754, 95783, 188177, 369696, 726312, 1426930, 2803381, 5507590, 10820345, 21257915, 41763825, 82050242, 161197933, 316693445, 622183778, 1222357651, 2401474098, 4717995460
OFFSET
1,4
COMMENTS
a(n+1) is the number of compositions n=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 4*p(k+1), see example. [Joerg Arndt, Dec 18 2012]
LINKS
Christian Elsholtz, Clemens Heuberger, Daniel Krenn, Algorithmic counting of nonequivalent compact Huffman codes, arXiv:1901.11343 [math.CO], 2019.
Christian Elsholtz, Clemens Heuberger, Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, arXiv:1108.5964v1 [math.CO], Aug 30, 2011. Also IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075.
FORMULA
a(n) = A294775(n-1,3). - Alois P. Heinz, Nov 08 2017
EXAMPLE
From Joerg Arndt, Dec 18 2012: (Start)
There are a(6+1)=15 compositions 6=p(1)+p(2)+...+p(m) with p(1)=1 and p(k) <= 4*p(k+1):
[ 1] [ 1 1 1 1 1 1 ]
[ 2] [ 1 1 1 1 2 ]
[ 3] [ 1 1 1 2 1 ]
[ 4] [ 1 1 1 3 ]
[ 5] [ 1 1 2 1 1 ]
[ 6] [ 1 1 2 2 ]
[ 7] [ 1 1 3 1 ]
[ 8] [ 1 1 4 ]
[ 9] [ 1 2 1 1 1 ]
[10] [ 1 2 1 2 ]
[11] [ 1 2 2 1 ]
[12] [ 1 2 3 ]
[13] [ 1 3 1 1 ]
[14] [ 1 3 2 ]
[15] [ 1 4 1 ]
(End)
MATHEMATICA
b[n_, r_, k_] := b[n, r, k] = If[n < r, 0, If[r == 0, If[n == 0, 1, 0], Sum[b[n-j, k*(r-j), k], {j, 0, Min[n, r]}]]];
a[n_] := b[3n-2, 1, 4];
Array[a, 40] (* Jean-François Alcover, Jul 21 2018, after Alois P. Heinz *)
PROG
(PARI)
/* g.f. as given in the Elsholtz/Heuberger/Prodinger reference */
N=66; q='q+O('q^N);
t=4; /* t-ary: t=2 for A002572, t=3 for A176485, t=4 for A176503 */
L=2 + 2*ceil( log(N) / log(t) );
f(k) = (1-t^k)/(1-t);
la(j) = prod(i=1, j, q^f(i) / ( 1 - q^f(i) ) );
nm=sum(j=0, L, (-1)^j * q^f(j) * la(j) );
dn=sum(j=0, L, (-1)^j * la(j) );
gf = nm / dn;
Vec( gf )
/* Joerg Arndt, Dec 27 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 07 2010
EXTENSIONS
Added terms beyond a(13)=848, Joerg Arndt, Dec 18 2012
STATUS
approved