login
A176463
Irregular triangle read by rows: T(n,k) = number of Huffman-equivalence classes of ternary trees with 3n+1 leaves and 4k leaves on the bottom level (n>=1, k>=1).
3
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 15, 8, 4, 2, 29, 15, 8, 4, 1, 57, 29, 15, 8, 2, 1, 112, 57, 29, 15, 4, 2, 1, 220, 112, 57, 29, 7, 4, 2
OFFSET
1,5
LINKS
Christian Elsholtz, Clemens Heuberger and Helmut Prodinger, The number of Huffman codes, compact trees, and sums of unit fractions, IEEE Trans. Information Theory, Vol. 59, No. 2, 2013 pp. 1065-1075; also arXiv:1108.5964 [math.CO], 2011.
Jordan Paschke, Jeffrey Burkert and Rebecca Fehribach, Computing and estimating the number of n-ary Huffman sequences of a specified length, Discrete Math., 311 (2011), 1-7.
EXAMPLE
Triangle begins:
1
1
1 1
2 1 1
4 2 1 1
8 4 2 1
15 8 4 2
29 15 8 4 1
57 29 15 8 2 1
112 57 29 15 4 2 1
220 112 57 29 7 4 2
CROSSREFS
Cf. A176431, A176452, A194628 - A194633. Leading column gives A176503.
Sequence in context: A152568 A155038 A057728 * A098050 A278984 A111579
KEYWORD
nonn,tabf,more
AUTHOR
N. J. A. Sloane, Dec 07 2010
STATUS
approved