login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075841 2*n^2 - 9 is a square. 4
3, 15, 87, 507, 2955, 17223, 100383, 585075, 3410067, 19875327, 115841895, 675176043, 3935214363, 22936110135, 133681446447, 779152568547, 4541233964835, 26468251220463, 154268273357943, 899141388927195 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Lim. n-> Inf. a(n)/a(n-1) = 3 + 2*Sqrt(2).

Positive values of x (or y) satisfying x^2 - 6xy + y^2 + 36 = 0. - Colin Barker, Feb 08 2014

REFERENCES

A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.

L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.

Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Tanya Khovanova, Recursive Sequences

J. J. O'Connor and E. F. Robertson, Pell's Equation

Eric Weisstein's World of Mathematics, Pell Equation.

Index entries for linear recurrences with constant coefficients, signature (6,-1).

FORMULA

a(n) = 3*sqrt(2)/4*((1+sqrt(2))^(2*n-1)-(1-sqrt(2))^(2*n-1)) = 6*a(n-1) - a(n-2)

G.f.: 3x(1-x)/(1-6x+x^2). [From Philippe Deléham, Nov 17 2008]

a(n) = 3*A001653(n). - R. J. Mathar, Sep 27 2014

MATHEMATICA

CoefficientList[Series[3 (1 - x)/(1 - 6 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 11 2014 *)

CROSSREFS

Sequence in context: A001931 A180677 A220875 * A152596 A278392 A168503

Adjacent sequences:  A075838 A075839 A075840 * A075842 A075843 A075844

KEYWORD

nonn,easy

AUTHOR

Gregory V. Richardson, Oct 14 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 25 23:17 EDT 2017. Contains 285426 sequences.