login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A355097
E.g.f. A(x) satisfies A(x) = 1 + 3 * log(1+x) * A(log(1+x)).
2
1, 3, 15, 87, 414, -333, -36207, -125415, 9692208, 65346480, -6686193834, -28979410023, 9399236141664, -74034590428035, -21601690453093869, 753341807730002715, 64208547156310265880, -6137571162315494165580, -131200755856066508312736
OFFSET
0,2
FORMULA
E.g.f. A(x) satisfies: A(exp(x) - 1) = 1 + 3*x*A(x).
a(0) = 1; a(n) = 3 * Sum_{k=1..n} k * Stirling1(n,k) * a(k-1).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=3*sum(j=1, i, j*stirling(i, j, 1)*v[j])); v;
CROSSREFS
Cf. A355105.
Sequence in context: A191148 A001931 A306524 * A180677 A220875 A075841
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 19 2022
STATUS
approved