login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180677
The Gi4 sums of the Pell-Jacobsthal triangle A013609.
3
1, 3, 15, 87, 503, 2871, 16311, 92599, 525751, 2985399, 16952759, 96267703, 546663863, 3104271799, 17627835831, 100100959671, 568430652855, 3227875241399, 18329726840247, 104086701305271, 591063984860599
OFFSET
0,2
COMMENTS
The a(n) represent the Gi4 sums of the Pell-Jacobsthal triangle A013609. See A180662 for information about these giraffe and other chess sums.
FORMULA
a(n) = 9*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) with a(0)=1, a(1)=3, a(2)= 15 and a(3)= 87.
a(n) = Sum_{k=0..n} A013609(n+3*k,n-k).
G.f.: (1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4).
MAPLE
nmax:=21: a(0):=1: a(1):=3: a(2):=15: a(3):=87: for n from 4 to nmax do a(n) := 9*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{9, -24, 32, -16}, {1, 3, 15, 87}, 30] (* G. C. Greubel, Jun 11 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3 +16*x^4)) \\ G. C. Greubel, Jun 11 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-6*x+ 12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4) )); // G. C. Greubel, Jun 11 2019
(Sage) ((1-6*x+12*x^2-8*x^3)/(1-9*x+24*x^2-32*x^3+16*x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 11 2019
(GAP) a:=[1, 3, 15, 87];; for n in [5..30] do a[n]:=9*a[n-1]-24*a[n-2] +32*a[n-3]-16*a[n-4]; od; a; # G. C. Greubel, Jun 11 2019
CROSSREFS
Cf. A052942 (Gi1), A008999 (Gi2), A180676 (Gi3), this sequence (Gi4).
Sequence in context: A001931 A306524 A355097 * A220875 A075841 A152596
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Sep 21 2010
STATUS
approved