The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180680 Expansion of e.g.f. (1 - sqrt(1 - 4*LambertW(x)))/2. 3
 1, 0, 9, 8, 705, 2304, 154945, 1097088, 67699233, 821657600, 49591224441, 901894072320, 54967757171041, 1372143152529408, 86054992196720625, 2772416395058315264, 181071792859314812865, 7195828128158173888512, 493215560390253143533033 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 FORMULA a(n) = n!*Sum_{k=1..n} (-1)^(n-k)*n^(n-k-1)*binomial(2*(k-1),k-1)/(n-k)!. a(n) ~ (4/exp(5/4))^n / sqrt(10) * n^(n-1). - Vaclav Kotesovec, Nov 27 2012 E.g.f.: LambertW(x)/(1 - LambertW(x)/(1 - LambertW(x)/(1 - LambertW(x)/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2017 MAPLE a:=series((1-sqrt(1-4*LambertW(x)))/2, x=0, 20): seq(n!*coeff(a, x, n), n=1..19); # Paolo P. Lava, Mar 28 2019 MATHEMATICA Rest[CoefficientList[Series[(1-Sqrt[1-4*LambertW[x]])/2, {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Nov 27 2012 *) PROG (PARI) x='x+O('x^50); Vec(serlaplace((1 - sqrt(1 - 4*lambertw(x)))/2)) \\ G. C. Greubel, Nov 08 2017 (PARI) a(n) = n!*sum(k=1, n, (-1)^(n-k)*n^(n-k-1)*binomial(2*(k-1), k-1)/(n-k)!); \\ Michel Marcus, Nov 09 2017 CROSSREFS Sequence in context: A082201 A038298 A013439 * A165398 A329716 A021105 Adjacent sequences:  A180677 A180678 A180679 * A180681 A180682 A180683 KEYWORD nonn AUTHOR Svetlana Khomich (hsl(AT)cyberline.ru), Sep 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 16:02 EDT 2020. Contains 336505 sequences. (Running on oeis4.)