login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370935
a(n) is the first term of A351048 with n prime factors, counted with multiplicity, or 0 if there is no such term.
1
1, 0, 9, 8, 189, 72, 160, 128, 384, 1152, 3456, 6912, 10240, 46080, 55296, 32768, 98304, 294912, 884736, 4423680, 3538944, 13107200, 27262976, 73400320, 41943040, 254803968, 226492416, 1132462080, 2038431744, 1811939328, 9059696640, 2147483648, 6442450944, 19327352832, 57982058496, 289910292480
OFFSET
0,3
COMMENTS
a(n) is the first number k, if any, such that A001222(k) = n and A000005(k) divides A003415(k).
LINKS
FORMULA
a(2^k - 1) = 2^(2^k - 1) for k >= 2.
EXAMPLE
a(4) = 189 because 189 = 3^3 * 7 has 4 prime factors and A000005(189) = 8 divides A003415(189) = 216, and no smaller number works.
MAPLE
children:= proc(r) local L, x, p, q, t, R;
x:= r[1];
L:= r[2];
t:= L[-1];
p:= t[1]; q:= nextprime(p);
if t[2]=1 then t:= [q, 1];
else t:= [p, t[2]-1], [q, 1]
fi;
R:= [x*q/p, [op(L[1..-2]), t]];
if nops(L) >= 2 then
p:= L[-2][1];
q:= L[-1][1];
if L[-2][2]=1 then t:= [q, L[-1][2]+1]
else t:= [p, L[-2][2]-1], [q, L[-1][2]+1]
fi;
R:= R, [x*q/p, [op(L[1..-3]), t]]
fi;
[R]
end proc:
f:= proc(n)
uses priqueue;
local pq, t, x, V, F;
initialize(pq);
insert([-2^n, [[2, n]]], pq);
do
V:= extract(pq);
x:= -V[1]; F:= V[2];
if (x * add(t[2]/t[1], t=F)) mod mul(t[2]+1, t=F) = 0
then return(x) fi;
for t in children(V) do insert(t, pq) od;
od;
end proc:
1, 0, seq(f(n), n=2..40);
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, May 06 2024
STATUS
approved