login
A370933
Number of pairs of antipodal vertices in the level n>1 Sierpiński triangle graph.
2
6, 15, 42, 132, 456, 1680, 6432, 25152, 99456, 395520, 1577472, 6300672, 25184256, 100700160, 402726912, 1610760192, 6442745856, 25770393600, 103080394752, 412319219712, 1649272160256, 6597079203840, 26388297940992, 105553154015232, 422212540563456, 1688850011258880, 6755399743045632
OFFSET
2,1
COMMENTS
A level 1 Sierpiński triangle graph is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles.
Antipodal vertices are a pair of vertices at maximum distance in a graph. The diameter of the level n Sierpiński triangle graph is 2^(n-1).
LINKS
Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph
FORMULA
a(n) = 3*2^(n-3)*(2^(n-2)+3).
a(n) = 3*A257273(n-2).
a(n) = A375256(n-1) + 3.
EXAMPLE
3 example graphs: o
/ \
o---o
/ \ / \
o o---o---o
/ \ / \ / \
o o---o o---o o---o
/ \ / \ / \ / \ / \ / \ / \
o---o o---o---o o---o---o---o---o
Graph: S_1 S_2 S_3
For S_2, there are 3 pairs of corners and 3 pairs of a corner and a middle vertex, so a(2) = 6.
MATHEMATICA
A370933[n_] := 3*2^(n - 3)*(2^(n - 2) + 3);
Array[A370933, 30, 2] (* or *)
LinearRecurrence[{6, -8}, {6, 15}, 30] (* Paolo Xausa, Sep 23 2024 *)
PROG
(PARI) a(n) = 3*2^(n-3)*(2^(n-2)+3); \\ Michel Marcus, Aug 08 2024
CROSSREFS
Cf. A007283, A029858, A067771, A193277, A233774, A233775, A246959, A298202 (Sierpiński triangle graphs).
Cf. A375256 (antipodal pairs in Hanoi graphs).
Sequence in context: A106368 A100491 A220030 * A230165 A271687 A271809
KEYWORD
nonn,easy
AUTHOR
Allan Bickle, Aug 07 2024
EXTENSIONS
More terms from Michel Marcus, Aug 08 2024
STATUS
approved