|
|
A220030
|
|
Number of n X 6 arrays of the minimum value of corresponding elements and their horizontal or diagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 n X 6 array.
|
|
1
|
|
|
6, 15, 42, 95, 192, 358, 626, 1038, 1646, 2513, 3714, 5337, 7484, 10272, 13834, 18320, 23898, 30755, 39098, 49155, 61176, 75434, 92226, 111874, 134726, 161157, 191570, 226397, 266100, 311172, 362138, 419556, 484018, 556151, 636618, 726119, 825392
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (1/120)*n^5 + (1/8)*n^4 + (5/24)*n^3 + (15/8)*n^2 + (227/60)*n - 4 for n>1.
G.f.: x*(3 - 6*x + 6*x^2 - 2*x^3)*(2 - 3*x + 4*x^2 - 2*x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>7.
(End)
|
|
EXAMPLE
|
Some solutions for n=3.
..1..1..0..0..0..0....0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0
..1..1..0..0..0..0....1..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..0..0
..1..1..1..1..0..0....1..0..0..0..0..0....1..0..0..0..0..0....1..1..0..0..0..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|