login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220027
a(n) = product(i >= 0, P(n, i)^(2^i)) where P(n, i) = product(p prime, n/2^(i+1) < p <= n/2^i).
1
1, 1, 2, 6, 12, 60, 180, 1260, 5040, 5040, 25200, 277200, 2494800, 32432400, 227026800, 227026800, 3632428800, 61751289600, 61751289600, 1173274502400, 29331862560000, 29331862560000, 322650488160000, 7420961227680000, 601097859442080000, 601097859442080000
OFFSET
0,3
COMMENTS
a(n) are the partial products of A219964(n).
a(n) divides n!, n!/a(n) = 1, 1, 1, 1, 2, 2, 4, 4, 8, 72, 144, 144, 192...
The swinging factorial (A056040) divides a(n), a(n)/n$ = 1, 1, 1, 1, 2,...
The primorial of n (A034386) divides a(n), a(n)/n# = 1, 1, 1, 1, 2, 2, 6,..
If p^k is the largest power of a prime dividing a(n) then k is 2^n for some n >= 0.
a(n) / A055773(n) is the largest square dividing a(n), a(n) / A055773(n) = A008833(a(n)).
MAPLE
a := proc(n) local k; `if`(n < 2, 1,
mul(k, k = select(isprime, [$iquo(n, 2)+1..n]))*a(iquo(n, 2))^2) end:
seq(a(i), i=0..25);
PROG
(Sage)
def a(n) :
if n < 2 : return 1
return mul(k for k in prime_range(n//2+1, n+1))*a(n//2)^2
[a(n) for n in (0..25)]
CROSSREFS
Cf. A055773.
Sequence in context: A104371 A104350 A328522 * A072489 A072487 A309875
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 30 2013
STATUS
approved