login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114696
Expansion of (1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.
4
1, 6, 15, 40, 97, 238, 575, 1392, 3361, 8118, 19599, 47320, 114241, 275806, 665855, 1607520, 3880897, 9369318, 22619535, 54608392, 131836321, 318281038, 768398399, 1855077840, 4478554081, 10812186006, 26102926095, 63018038200, 152139002497, 367296043198
OFFSET
0,2
COMMENTS
Elements of odd index give match to A065113: Sum of the squares of the n-th and the (n+1)st triangular numbers (A000217) is a perfect square.
Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e
FORMULA
G.f.: (1 +4*x +x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(0)=1, a(1)=6, a(2)=15, a(3)=40, a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - Harvey P. Dale, Jan 23 2014
a(n) = (-3 - (-1)^n + (3-2*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(3+2*sqrt(2)))/2. - Colin Barker, May 26 2016
From G. C. Greubel, May 24 2021: (Start)
a(n) = 3*A000129(n+1) + A000129(n) - (3 + (-1)^n)/2.
a(n) = (1/2)*(A002203(n+2) - 3 - (-1)^n). (End)
MAPLE
Q:= proc(n) option remember; # Q=A002203
if n<2 then 2
else 2*Q(n-1) + Q(n-2)
fi; end:
seq((Q(n+2) -3 -(-1)^n)/2, n=0..40); # G. C. Greubel, May 24 2021
MATHEMATICA
CoefficientList[Series[(1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 2, -2, -1}, {1, 6, 15, 40}, 30] (* Harvey P. Dale, Jan 23 2014 *)
PROG
(PARI) Vec((1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^30)) \\ Colin Barker, May 26 2016
(Sage) [(lucas_number2(n+2, 2, -1) -3 -(-1)^n)/2 for n in (0..30)] # G. C. Greubel, May 24 2021
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Feb 18 2006
STATUS
approved