OFFSET
0,2
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).
FORMULA
G.f.: (1 +4*x +x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(0)=1, a(1)=6, a(2)=15, a(3)=40, a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - Harvey P. Dale, Jan 23 2014
a(n) = (-3 - (-1)^n + (3-2*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(3+2*sqrt(2)))/2. - Colin Barker, May 26 2016
From G. C. Greubel, May 24 2021: (Start)
a(n) = (1/2)*(A002203(n+2) - 3 - (-1)^n). (End)
MAPLE
Q:= proc(n) option remember; # Q=A002203
if n<2 then 2
else 2*Q(n-1) + Q(n-2)
fi; end:
seq((Q(n+2) -3 -(-1)^n)/2, n=0..40); # G. C. Greubel, May 24 2021
MATHEMATICA
CoefficientList[Series[(1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 2, -2, -1}, {1, 6, 15, 40}, 30] (* Harvey P. Dale, Jan 23 2014 *)
PROG
(PARI) Vec((1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^30)) \\ Colin Barker, May 26 2016
(Sage) [(lucas_number2(n+2, 2, -1) -3 -(-1)^n)/2 for n in (0..30)] # G. C. Greubel, May 24 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Feb 18 2006
STATUS
approved