login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114695
Three consecutive elements of the sequence built from a quadratic form over four consecutive Fibonacci numbers A000045.
6
2, 2, 4, 104, 143, 169, 4895, 6764, 7921, 229970, 317810, 372100, 10803704, 14930351, 17480761, 507544127, 701408732, 821223649, 23843770274, 32951280098, 38580030724, 1120149658760, 1548008755919, 1812440220361
OFFSET
0,1
FORMULA
a(3*n) = Fibonacci(4*n+2)*Fibonacci(4*n+3).
a(3*n+1) = Lucas(4*n+1)*Fibonacci(4*n+3).
a(3*n+2) = Fibonacci(4*n+3)*Fibonacci(4*n+3).
From R. J. Mathar, Apr 16 2009: (Start)
a(3*n) = A001654(4*n+2).
a(3*n+1) = A128535(4*n+3).
a(3*n+2) = A007598(4*n+3).
G.f.: (2+2*x+4*x^2+8*x^3+47*x^4-23*x^5-x^6-4*x^7+x^8)/((1-x)*(1+x+x^2)*(1-47*x^3+x^6)).
a(n) = 48*a(n-3) - 48*a(n-6) + a(n-9). (End)
a(n) = F(4*m+3)*( 4*F(4*m+2) - ((n^2 mod 3)*F(4*m+2) + ((n+2)^2 mod 3)*Lucas(4*m+1) + ((n+1)^2 mod 3)*F(4*m+3)) ), where m = floor(n/3) and F = Fibonacci. - G. C. Greubel, May 24 2021
MATHEMATICA
F[n_]:= Fibonacci[n]; Flatten[Table[{F[4*n+2]*F[4*n+3], (F[4*n]+F[4*n+2])*F[4*n+ 3], F[4*n+3]^2}, {n, 0, 12}]] (* modified by G. C. Greubel, May 24 2021 *)
With[{m = Floor[n/3], F = Fibonacci}, Table[F[4*m+3]*(4*F[4*m+2] -(Mod[n^2, 3]*F[4*m +2] +Mod[(n+2)^2, 3]*LucasL[4*m+1] +Mod[(n+1)^2, 3]*F[4*m+3])), {n, 0, 40}]] (* G. C. Greubel, May 24 2021 *)
PROG
(Sage)
f=fibonacci;
def A114695(n): return f(4*(n//3)+3)*( 4*f(4*(n//3)+2) - ((n^2%3)*f(4*(n//3)+2) + ((n+2)^2%3)*(f(4*(n//3)+2) + f(4*(n//3))) + ((n+1)^2%3)*f(4*(n//3)+3) ) )
[A114695(n) for n in (0..40)] # G. C. Greubel, May 24 2021
CROSSREFS
Sequence in context: A270554 A037010 A294184 * A134084 A267346 A372238
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, Feb 21 2006
EXTENSIONS
Edited by the Associate Editors of the OEIS, Sep 02 2009
STATUS
approved