OFFSET
0,2
COMMENTS
Generating floretion: (- .5'j + .5'k - .5j' + .5k' + 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki')*('i + 'j + i').
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).
FORMULA
a(n+2) - 2*a(n+1) + a(n) = A111955(n+2).
G.f.: (1+x+x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
From Raphie Frank, Oct 01 2012: (Start)
a(2*n) = A216134(2*n+1).
a(2*n+1) = A006452(2*n+3)-1.
Lim_{n->infinity} a(n+1)/a(n) = A014176. (End)
From Colin Barker, May 26 2016: (Start)
a(n) = ( 2*(-3 +(-1)^n) + (6-5*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(6+5*sqrt(2)) )/8.
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n>3. (End)
MATHEMATICA
Table[(3*LucasL[n, 2] +10*Fibonacci[n, 2] -3 +(-1)^n)/4, {n, 0, 30}] (* G. C. Greubel, May 24 2021 *)
PROG
(PARI) Vec((1+x+x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^40)) \\ Colin Barker, Jun 24 2015
(Sage) [(4*lucas_number1(n+2, 2, -1) -2*lucas_number1(n+1, 2, -1) -3 +(-1)^n)/4 for n in (0..30)] # G. C. Greubel, May 24 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Feb 18 2006
STATUS
approved